Adsorption-controlled conditions have been identified and utilized to grow epitaxial bismuth titanate thin films by reactive molecular beam epitaxy. Growth of stoichiometric, phase pure, c-axis oriented, epitaxial films is achieved by supplying a large overabundance of bismuth and ozone continuously to the surface of the depositing film. Titanium is supplied to the film in the form of shuttered bursts each containing a three monolayer dose of titanium to grow one formula unit of Bi4Ti3O12. It is seen from measured film thickness, Rutherford backscattering spectrometry composition measurements, monitoring of reflection high-energy electron diffraction half-order intensity oscillations during growth, and in situ flux measurements using atomic absorption spectroscopy that at suitable temperature and ozone background pressure, the titanium sticking coefficient approaches one and the excess bismuth desorbs from the surface. Film growth proceeds by the formation of mounds whose step heights are predominantly integral multiples of a half-unit cell.

1.
Bi4Ti3O12 is monoclinic with space group B1a1 as shown by
A. D.
Rae
,
J. G.
Thompson
,
R. L.
Withers
, and
A. C.
Willis
,
Acta Crystallogr. Sect. B: Struct. Sci.
46
,
474
(
1990
).
2.
C. A-
Paz de Araujo
,
J. D.
Cuchiaro
,
L. D.
McMillan
,
M. C.
Scott
, and
J. F.
Scott
,
Nature (London)
374
,
627
(
1995
).
3.
W. J.
Takei
,
N. P.
Formigoni
, and
M. H.
Francombe
,
Appl. Phys. Lett.
15
,
256
(
1969
).
4.
R.
Ramesh
,
A.
Inam
,
W. K.
Chan
,
B.
Wilkens
,
K.
Myers
,
K.
Remschnig
,
D. L.
Hart
, and
J. M.
Tarascon
,
Science
252
,
944
(
1991
).
5.
S.
Choopun
,
T.
Matsumoto
, and
T.
Kawai
,
Appl. Phys. Lett.
67
,
1072
(
1995
).
6.
EPI, Chorus Corporation, St. Paul, MN.
7.
C. D.
Theis
and
D. G.
Schlom
,
J. Cryst. Growth
174
,
473
(
1997
).
8.
M.
Kawasaki
,
K.
Takahashi
,
T.
Maeda
,
R.
Tsuchiya
,
M.
Shinohara
,
O.
Isiyama
,
T.
Yonezawa
,
M.
Yoshimoto
, and
H.
Koinuma
,
Science
266
,
1540
(
1994
).
9.
M.
de Keijser
and
G. J. M.
Dormans
,
MRS Bull.
37
(
1996
).
10.
J. R.
Arthur
,
J. Appl. Phys.
39
,
4032
(
1968
).
11.
I. Barin, Thermochemical Data of Pure Substances, 3rd. ed. (VCH Publishers, Inc., New York, 1995).
12.
S.
Watanabe
,
T.
Hikita
, and
Maki
Kawai
,
J. Vac. Sci. Technol. A
9
,
2394
(
1991
).
13.
L. N.
Sidorov
,
I. I.
Minayeva
,
E. Z.
Zasorin
,
I. D.
Sorokin
, and
A. Ya.
Borshchevskiy
,
High. Temp. Sci.
12
,
175
(
1980
).
14.
I. M.
Reaney
,
M.
Roulin
,
H. S.
Shulman
, and
N.
Setter
,
Ferroelectrics
165
,
295
(
1995
).
15.
S.
Migita
,
Y.
Kasai
,
H.
Ota
, and
S.
Sakai
,
Appl. Phys. Lett.
71
,
3712
(
1997
).
16.
C.
Gerber
,
D.
Anselmetti
,
J. G.
Bednorz
,
J.
Mannhart
, and
D. G.
Schlom
,
Nature (London)
350
,
279
(
1991
).
17.
M.
Hawley
,
I. D.
Raistrick
,
J. G.
Beery
, and
R. J.
Houlton
,
Science
251
,
1587
(
1991
).
18.
G.
Ehrlich
and
F. G.
Hudda
,
J. Chem. Phys.
44
,
1039
(
1966
).
19.
R. L.
Schwoebel
and
E. J.
Shipsey
,
J. Appl. Phys.
37
,
3682
(
1966
).
This content is only available via PDF.
You do not currently have access to this content.