Cobalt–platinum–carbon thin film was deposited with a chemical composition of Co50Pt15C35. The film had a nanogranular morphology with a grain size ranging from 5 to 15 nm. It consisted of cobalt–platinum grains which had a faulted hexagonal close-packed phase and were separated by graphitelike carbon boundaries. The film in-plane coercivity was 1500 Oe, compared to a few hundreds oersteds in the case of cobalt–carbon. This result establishes a way of fabricating high coercivity cobalt–carbon based materials, which have potential applications as high density magnetic recording media.

1.
T.
Yogi
,
T. A.
Nguyen
,
S.
Lambert
,
G.
Gorman
, and
G.
Castillo
,
Mater. Res. Soc. Symp. Proc.
232
,
3
(
1991
).
2.
T.
Yamashita
,
L. H.
Chan
,
T.
Fujiwara
, and
T.
Chen
,
IEEE Trans. Magn.
MAG-27
,
4727
(
1991
).
3.
G.
Xiao
and
C. L.
Chien
,
J. Appl. Phys.
63
,
4252
(
1988
).
4.
A.
Murayama
,
M.
Miyamura
, and
S.
Kondoh
,
J. Appl. Phys.
76
,
5361
(
1994
).
5.
T.
Hayashi
,
S.
Hirono
,
M.
Tomita
, and
S.
Umemura
,
Nature (London)
381
,
772
(
1996
).
6.
J.-J.
Delaunay
,
T.
Hayashi
,
M.
Tomita
, and
S.
Hirono
,
J. Appl. Phys.
82
,
2200
(
1997
).
7.
International Centre for Diffraction data, JCPDS Powder Diffraction File, Cobalt Hexagonal Card 05-0727, Cobalt Cubic Card 15-0806.
8.
T. R.
Anantharaman
and
J. W.
Christian
,
Acta Crystallogr.
9
,
479
(
1956
).
9.
A. S. Darling, Platinum Met. Rev. 7, 96 (1963).
10.
A.
Ishikawa
and
R.
Sinclair
,
J. Magn. Magn. Mater.
152
,
265
(
1996
).
11.
J. A.
Aboaf
,
S. R.
Herd
, and
E.
Klokhom
,
IEEE Trans. Magn.
MAG-19
,
1514
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.