Experimental and theoretical investigations are reported for defect generation by electrical stress in silicon dioxide and for the critical number of defects necessary to trigger destructive breakdown. Experimental evidence is presented showing that the critical number of defects reaches a limit when the oxide thickness is reduced below 2.7 nm. Percolation calculations are shown to be consistent with this oxide thickness limit representing the “effective size” of one defect spanning the oxide, connecting anode and cathode together. Also, these calculations show that not all of the defects are capable of triggering a destructive breakdown event.

1.
D. J.
DiMaria
and
E.
Cartier
,
J. Appl. Phys.
78
,
3883
(
1995
).
2.
D. J.
DiMaria
and
J. H.
Stathis
,
Appl. Phys. Lett.
70
,
2708
(
1997
).
3.
M.
Depas
,
T.
Nigam
, and
M. M.
Heyns
,
Solid-State Electron.
41
,
725
(
1997
).
4.
D. J.
DiMaria
,
Appl. Phys. Lett.
68
,
3004
(
1996
).
5.
D. J.
DiMaria
and
J. W.
Stasiak
,
J. Appl. Phys.
65
,
2342
(
1989
).
6.
D. J.
DiMaria
,
E.
Cartier
, and
D.
Arnold
,
J. Appl. Phys.
73
,
3367
(
1993
).
7.
J. W.
Lyding
,
T.-C.
Shen
,
G. C.
Abeln
,
C.
Wang
,
E. T.
Foley
, and
J. R.
Tucker
,
Mater. Res. Soc. Symp. Proc.
380
,
187
(
1995
).
8.
R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, in IEDM 95 (IEEE, Piscataway, NJ, 1995), pp. 863–865.
9.
J. H.
Stathis
,
Microelectron. Eng.
36
,
325
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.