Epitaxy of Al films deposited on GaN has been studied using reflection high-energy electron diffraction (RHEED), atomic force microscopy (AFM), x-ray diffraction, and ion channeling techniques. Al (111) films have been found to grow epitaxially on GaN (0001) surfaces with Al 〈21̄1̄〉‖GaN〈21̄1̄0〉. For growth at 15 and 150 °C with a deposition rate of 0.26 Å/s, the epitaxial quality of the film was poor initially, as evidenced by the observation of diffuse RHEED patterns. After a few monolayers, a sharp and streaky RHEED pattern develops and is maintained during subsequent deposition, indicating an improvement in epitaxial quality with a two-dimensional growth mode. AFM studies indicate that the initial GaN surface quality is a significant factor in achieving epitaxial growth, and that the size of Al epitaxial islands increases substantially for higher growth temperatures. X-ray diffraction and ion channeling results confirm the epitaxial nature of the Al films in spite of a significant lattice mismatch of 10.2%.

1.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
H.
Kiyoku
, and
Y.
Sugimoto
,
Jpn. J. Phys.
35
,
L74
(
1996
).
2.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
, and
S.
Nagahama
,
Appl. Phys. Lett.
67
,
1868
(
1995
).
3.
S. C.
Binari
,
L. B.
Rowland
,
W.
Kruppa
,
G.
Kelner
,
K.
Doverspike
, and
D. K.
Gaskill
,
Electron. Lett.
30
,
1248
(
1994
).
4.
M. A.
Khan
,
M. S.
Shur
,
J. N.
Kuznia
,
Q.
Chen
,
J.
Burm
, and
W. J.
Schaff
,
Appl. Phys. Lett.
66
,
1083
(
1995
).
5.
T. P.
Chow
and
R.
Tyagi
,
IEEE Trans. Electron Devices
41
,
1481
(
1994
).
6.
T.
Sands
,
C. J.
Palmstrom
,
J. P.
Harbison
,
V. G.
Keramidas
,
N.
Tabatabaie
,
T. L.
Cheeks
,
R.
Ramesh
, and
Y.
Siberberg
,
Mater. Sci. Rep.
5
,
99
(
1990
), and references therein.
7.
C. W. Wilmsen, in Physics and Chemistry of III–V Compound Semiconductor Interfaces, edited by C. W. Wilmsen (Plenum, New York, 1985), Chap. 7.
8.
M. A.
Khan
,
J. N.
Kuznia
,
D. T.
Olson
, and
R.
Kaplan
,
J. Appl. Phys.
73
,
3108
(
1993
).
9.
V. M.
Bermudez
,
R.
Kaplan
,
M. A.
Khan
, and
J. N.
Kuznia
,
Phys. Rev. B
48
,
2458
(
1993
).
10.
V. M.
Bermudez
,
T. M.
Jung
,
K.
Doverspike
, and
A. E.
Wickenden
,
J. Appl. Phys.
79
,
110
(
1996
).
11.
R.
Kaplan
,
S. M.
Prokes
,
S. C.
Binari
, and
G.
Kelner
,
Appl. Phys. Lett.
68
,
3248
(
1996
).
12.
Q. Z.
Liu
,
S. S.
Lau
,
N. R.
Perkins
, and
T. F.
Kuech
,
Appl. Phys. Lett.
69
,
1722
(
1996
).
13.
Q. Z. Liu, K. V. Smith, E. T. Yu, S. S. Lau, N. R. Perkins, and T. F. Kuech, presented at Fall Meeting of the MRS, Boston, Massachusetts, December 1996.
14.
N. R. Perkins, M. N. Horton, D. Zhi, Z. Z. Bandic, T. C. McGill, and T. F. Kuech, presented at Spring Meeting of the MRS, San Francisco, CA, April, 1996.
15.
J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic, New York, 1993), p. 254.
16.
R. S.
Williams
,
L. C.
Feldman
, and
A. Y.
Cho
,
Radiat. Eff.
54
,
217
(
1981
).
17.
L. L.
Smith
,
S. W.
King
,
R. J.
Nemanich
, and
R. F.
Davis
,
J. Electron. Mater.
25
,
805
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.