We report on thin-film microstrip lines (TFMSLs) fabricated on low-resistivity Si with polymerized cyclotene as the dielectric between signal and ground conductor, all on top of the wafer. Electro-optic high-frequency characterization of the TFMSLs reveals negligible modal dispersion up to the highest frequencies of 1.0 THz. In spite of the high substrate conductivity, the attenuation is low (⩽1 dB/mm at 100 GHz). Over the full frequency range, it is dominated by conductor losses and not by absorption in the dielectric. With these dispersion and attenuation properties, TFMSLs are an attractive alternative to coplanar waveguides, with the additional advantage of immunity against substrate absorption and radiation losses.

1.
H.
Roskos
,
M. C.
Nuss
,
K. W.
Goossen
,
D. W.
Kisker
,
A. E.
White
,
K. T.
Short
,
D. C.
Jacobson
, and
J. M.
Poate
,
Appl. Phys. Lett.
58
,
2604
(
1991
).
2.
J.
Gondermann
,
E.
Stein von Kamienski
,
H. G.
Roskos
, and
H.
Kurz
,
IEEE Trans. Microwave Theory Tech.
MTT-41
,
2087
(
1993
).
3.
S.
Banba
and
H.
Ogawa
,
IEEE Trans. Microwave Theory Tech.
MTT-43
,
485
(
1995
).
4.
G. M.
Adema
,
L.-T.
Hwang
,
G. A.
Rinne
, and
I.
Turlik
,
IEEE Trans. Compon. Hybrids Manuf. Technol.
16
,
53
(
1993
).
5.
P. B.
Chinoy
and
J.
Tajadod
,
IEEE Trans. Compon. Hybrids Manuf. Technol.
16
,
704
(
1993
).
6.
E.
Yablonovitch
,
D. M.
Hwang
,
T. J.
Gmitter
,
L. T.
Florez
, and
J. P.
Harbison
,
Appl. Phys. Lett.
56
,
2419
(
1990
).
7.
O. Hollricher, Ph.D. thesis, University of Cologne, 1993.
8.
W.
Heinrich
,
IEEE Trans. Microwave Theory Tech.
MTT-38
,
1468
(
1990
).
9.
R. Pregla and W. Pascher, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, edited by T. Itoh (Wiley, New York, 1989), pp. 381–446.
This content is only available via PDF.
You do not currently have access to this content.