We demonstrate a novel type of optical switching mechanism in pin separate confinement multiple quantum well (SCMQW) structures. By introducing additional large barriers into conventional InGaAs(P)/InP SCMQW structures, the transport of photogenerated holes can be controlled in such a way that they accumulate in the intrinsic region. This positive space charge leads to a local screening of the internal field in the optical confinement layer and to an enhancement of the internal field in the MQW region. We characterize the optical nonlinearity, which is based on the quantum confined Stark effect (QCSE), experimentally and theoretically. As the nonlinearity is observed at input powers <1 W/cm2 in the basic nonoptimized structures presented here, we propose to use our structure especially for low‐power optical switches.

1.
C.
Klingshirn
,
Semicond. Sci. Technol.
5
,
457
(
1990
).
2.
M. K.
Hibbs-Brenner
,
P. P.
Ruden
,
J. A.
Lehman
,
J. J.
Liu
, and
R. A.
Walterson
,
IEEE J. Quantum Electron.
QE-30
,
1227
(
1994
).
3.
D. S.
Chemla
,
D. A. B.
Miller
,
P. W.
Smith
,
A. C.
Gossard
, and
W.
Wiegmann
,
IEEE J. Quantum Electron.
QE-20
,
265
(
1984
).
4.
J. F.
Heffernan
,
M. H.
Molonea
,
J.
Hegarty
,
J. S.
Roberts
, and
M.
Whitehead
,
Appl. Phys. Lett.
58
,
2877
(
1991
).
5.
C.
Väterlein
,
G.
Fuchs
,
A.
Hangleiter
,
V.
Härle
, and
F.
Scholz
,
J. Appl. Phys.
76
,
1184
(
1994
).
6.
C.
Knorr
,
O.
Gfrörer
,
V.
Härle
,
F.
Scholz
, and
A.
Hangleiter
,
Semicond. Sci. Technol.
10
,
1484
(
1995
).
7.
D. A. B.
Miller
,
J. Opt. Soc. Am. B
1
,
857
(
1984
).
8.
D. A. B.
Miller
,
Opt. Quantum Electron.
22
,
61
(
1990
).
9.
K.
Obata
,
M.
Yamanishi
,
Y.
Yamaoka
,
Y.
Kan
,
J.
Hayashi
, and
I.
Suemune
,
Appl. Phys. Lett.
57
,
419
(
1990
).
10.
M.
Sugawara
,
N.
Okazaki
,
T.
Fujii
, and
S.
Yamazaki
,
Phys. Rev. B
48
,
8102
(
1993
).
11.
N. Klötzer, Ph.D. thesis, Universität Stuttgart, 1991.
This content is only available via PDF.
You do not currently have access to this content.