Studies of aluminum chemical vapor deposition (CVD) from dimethylethylamine alane on GaAs(100) 2×4 surfaces were used to identify the high‐temperature, flux‐limited growth regime and determine the effective sticking coefficient α. Following a short induction period, α was found to achieve a largely temperature‐independent steady‐state value (α=0.13±0.04), substantially lower than expected based on current CVD models. We propose that steric effects—previously ignored in CVD—play a role in determining the upper limit of α and therefore the maximum achievable growth rate.
REFERENCES
1.
The Chemistry of Metal CVD, edited by T. Kodas and M. H. Smith (VHH, Weinheim, 1994); M. J. Hampden-Smith and T. T. Kodas, Chem. Vap. Deposition 1, 8 (1995), and references therein.
2.
3.
H. H. Lee, Fundamentals of Microelectronics Processing (McGraw-Hill, New York, 1990).
4.
5.
6.
K. M. Chen, T. Castro, A. Franciosi, W. L. Gladfelter, and P. I. Cohen, Appl. Phys. Lett. 60, 2132 (1992); J. Han, K. F. Jensen, Y. Senzaki, and W. L. Gladfelter, Appl. Phys. Lett. 64, 425 (1994).
7.
I. Karpov, G. Bratina, L. Sorba, A. Franciosi, M. G. Simmonds, and W. L. Gladfelter, J. Appl. Phys. 76, 3471 (1994); N. Venkateswaran, I. Karpov, W. Gladfelter, and A. Franciosi, J. Vac. Sci. Technol. A 14, 1949 (1996).
8.
Y.
Fan
,I.
Karpov
,G.
Bratina
,L.
Sorba
,W.
Gladfelter
, andA.
Franciosi
, J. Vac. Sci. Technol. B
14
, 623
(1996
). 9.
After a series of freeze-pump-thaw cycles, precursor pressures from 0.2 to 1.7 Torr as recorded with a capacitance manometer were set in the UHV-compatible gas line. The valve between the gas line and the main UHV chamber was then open completely to allow the precursor to expand in the main chamber and achieve equilibrium. From the ion gauge reading in the main chamber, the known volume ratio between the gas line and the main chamber, and the initial capacitance manometer reading, we obtained an ion gauge sensitivity factor for DMEAA relative to nitrogen of 0.9±0.1, with the quoted error corresponding to the scatter of eleven experimental results.
10.
B. E. Bent, R. G. Nuzzo, and L. H. Dubois, J. Am. Chem. Soc. 111, 1634 (1989); L. H. Dubois, B. R. Zegarski, C.-T. Kao, and R. G. Nuzzo, Surf. Sci. 236, 77 (1990); L. H. Dubois, B. R. Zegarski, M. E. Gross, and R. G. Nuzzo, Surf. Sci. 244, 89 (1991).
11.
K. Werner, S. Butzke, S. Radelaar, and P. Balk, J. Cryst. Growth 136, 322 (1994); S. M. Mokler, W. K. Liu, N. Ohtani, J. Zhang, and B. A. Joyce, Surf. Sci. 275, 16 (1992).
12.
C. E. Otis and R. W. Dreyfus, Phys. Rev. Lett. 67, 2102 (1991); T. Okada, Y. Nakayama, W. K. A. Kumuduni, and M. Maeda, Appl. Phys. Lett. 61, 2368 (1992); C. Gabbanini, S. Gozzini, and A. Lucchesi, Appl. Phys. Lett. 67, 715 (1995).
13.
J. Dai and J. Z. H. Zhang, Surf. Sci. 319, 193 (1994); M. Beutl, M. Riedler, and K. D. Rendulic, Chem. Phys. Lett. 247, 249 (1995).
This content is only available via PDF.
© 1996 American Institute of Physics.
1996
American Institute of Physics
You do not currently have access to this content.