Emission mechanisms of InGaN single quantum well blue and green light emitting diodes and multiquantum well structures were investigated by means of modulation spectroscopy. Their static electroluminescence (EL) peak was assigned to the recombination of excitons localized at certain potential minima in the quantum well. The blueshift of the EL peak caused by the increase of the driving current was explained by combined effects of the quantum‐confinement Stark effect and band filling of the localized states by excitons.

1.
For a review see, for example,
S.
Strite
and
H.
Morkoc
,
J. Vac. Sci. Technol. B
10
,
1237
(
1992
).
2.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
,
S.
Nagahama
,
T.
Yamada
, and
T.
Mukai
,
Jpn. J. Appl. Phys. 1
134
,
L1332
(
1994
).
3.
S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 1 135, L74 (1996); 35, L217 (1996); Appl. Phys. Lett. 68, 3269 (1996).
4.
I.
Akasaki
,
S.
Sota
,
H.
Sakai
,
T.
Tanaka
,
M.
Koike
, and
H.
Amano
,
Electron. Lett.
32
,
1105
(
1996
).
5.
T. Taguchi, 43rd Spring Meeting of the Japan Society of Applied Physics and Related Societies, Asaka, Japan, 29 March 1996 (unpublished).
6.
S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, J. Appl. Phys. 79, 2784 (1996); Proceedings of the International Symposium on Blue Laser and Light Emitting Diodes, Ohmsha, Tokyo, 1996, p.202.
7.
W.
Shan
,
T. J.
Schmidt
,
X. H.
Yang
,
S. J.
Hwang
,
J. J.
Song
, and
B.
Goldenberg
,
Appl. Phys. Lett.
66
,
985
(
1995
).
8.
S. Chichibu, A. Shikanai, T. Azuhata, T. Sota, A. Kuramata, K. Horino, and S. Nakamura, Appl. Phys. Lett. 68, 3766 (1996); A. Shikanai, T. Azuhata, T. Sota, S.Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. (to be published).
9.
H. Tsutsui, T. Igarashi, T. Azuhata, T. Sota, S. Chichibu, and S. Nakamura (unpublished). The exciton binding energy in the GaN/Al0.1Ga0.9N QW was calculated by the variational method according to G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki [Phys. Rev. B 26, 1974 (1982)]. In the calculation, we started from the Hamiltonian suitable to QWs including mass and dielectric constant anisotropy, assuming an infinite barrier height to simplify the calculation. After variable transformations for Z coordinates (perpendicular to the QW plane) that formally remove the mass anisotropy in the Hamiltonian, the exciton binding energy was calculated using the trial function for the excitonic relative motion given by exp{−[ρ2+(ZeZh)2]1/2/λ}, considering the fact that the 3D exciton Bohr radius is as small as 3.4 nm. Here λ is the variational parameter, ρ is the absolute value of the relative positions of the electron and the hole in the QW plane, and Ze (Zh is the transformed Z coordinate of the electron (hole).
10.
K.
Osamura
,
S.
Naka
, and
Y.
Murakami
,
J. Appl. Phys.
46
,
3432
(
1975
).
11.
C. I.
Harris
,
B.
Monemar
,
H.
Amano
, and
I.
Akasaki
,
Appl. Phys. Lett.
67
,
840
(
1995
).
12.
H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), p. 148.
13.
C. Kisielowski and Z. Liliental-Weber (private communication).
14.
D. L.
Smith
and
C.
Mailhiot
,
Phys. Rev. Lett.
58
,
1264
(
1987
).
15.
The piezoelectric field was calculated with the values of piezoelectric constants of GaN (see Ref.1) according to M. P. Halsall, J. E. Nicholls, J. J. Davies, B. Cockayne, and P. J. Wright [J. Appl. Phys. 71, 907 (1992)], and the Stark shift due to the electric field was calculated by the variational method neglecting exciton binding energy. Calculations are based on works by D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gross, W. Wiegmann, T. H. Wood, and C. A. Burrus [Phys. Rev. Lett. 53, 2173 (1981)] and [Phys. Rev. B 32, 1043 (1985)].
This content is only available via PDF.
You do not currently have access to this content.