A focused laser beam has been used to induce oxidation of hydrogen‐passivated silicon. The scanning laser beam removes the hydrogen passivation locally from the silicon surface, which immediately oxidizes in air. The process has been studied as a function of power density and excitation wavelength on amorphous and crystalline silicon surfaces in order to determine the depassivation mechanism. The minimum linewidth achieved is about 450 nm using writing speeds of up to 100 mm/s. The process is fully compatible with local oxidation of silicon by scanning probe lithography. Wafer‐scale patterns can be generated by laser direct oxidation and complemented with nanometer resolution by scanning probe techniques. The combined micro‐ and nanoscale pattern can be transferred to the silicon in a single etching step by either wet or dry etching techniques.

1.
J. A.
Dagata
,
J.
Schneir
,
H. H.
Harary
,
C. J.
Evans
,
M. T.
Postek
, and
J.
Bennett
,
Appl. Phys. Lett.
56
,
2001
(
1990
).
2.
E. S.
Snow
,
P. M.
Campbell
, and
P. J.
McMarr
,
Appl. Phys. Lett.
63
,
749
(
1993
).
3.
H. C.
Day
and
D. R.
Allee
,
Appl. Phys. Lett.
62
,
2691
(
1993
).
4.
L.
Tsau
,
D.
Wang
, and
K. L.
Wang
,
Appl. Phys. Lett.
64
,
2133
(
1993
).
5.
F.
Pérez-Murano
,
G.
Abadal
,
N.
Barniol
,
X.
Aymerich
,
J.
Servat
,
P.
Gorostiza
, and
F.
Sanz
,
J. Appl. Phys.
78
,
6797
(
1995
).
6.
S.
Madsen
,
M.
Müllenborn
,
K.
Birkelund
, and
F.
Grey
,
Appl. Phys. Lett.
69
,
544
(
1996
).
7.
S. C.
Minne
,
H. T.
Soh
,
Ph.
Flueckiger
, and
C. F.
Quate
,
Appl. Phys. Lett.
66
,
703
(
1995
).
8.
M.
Müllenborn
,
H.
Dirac
, and
J. W.
Petersen
,
Appl. Phys. Lett.
66
,
3001
(
1995
).
9.
N.
Kramer
,
M.
Niesten
, and
C.
Schöenberger
,
Appl. Phys. Lett.
67
,
2989
(
1995
).
10.
D.
Klyachko
,
P.
Rowntree
, and
L.
Sanche
,
Surf. Sci.
346
,
L49
(
1996
).
11.
M. Lax, Appl. Phys. Lett. 33, 786 (1978); using this calculation, the temperature rise for thick thermally insulating oxide layers is underestimated.
12.
First-principle density functional calculations show that there are no surface states in the band gap for fully hydrogen-passivated crystalline silicon surfaces [K. Stockbro (private communication)]. Also hydrogenated a-Si, which has been studied in detail and which is similar to hydrogen-passivated a-Si, does not show distinct absorption bands in the band gap [G. D. Cody, in Hydrogenated Amorphous Silicon, Part B, Optical Properties, edited by J. I. Pankove, Semiconductors and Semimetals, Vol. 21, edited by R. K. Willardson and A. C. Beer (Academic, Orlando, 1984), p. 11].
13.
K. Birkelund, M. Müllenborn, S. Madsen, and F. Grey, Superlatt. Microstructure (to be published).
This content is only available via PDF.
You do not currently have access to this content.