High‐resolution x‐ray diffractometry has been applied to the structural characterization of piezoelectric strained InGaAs/GaAs multiquantum well pin diodes grown by molecular beam epitaxy on (111)B GaAs substrates. Reference samples simultaneously grown on (001) GaAs have been also characterized. Diodes with 3, 7, and 10 periods and different well to barrier thickness ratio have been studied. Symmetric and asymmetric reflections at various azimuths were measured and the scans were fitted with theoretical curves obtained through a dynamical simulation program developed in our lab. The comparison between experimental and simulated profiles has enabled us to determine the main structural parameters of the samples. High‐resolution x‐ray diffractometry provided accurate data about period and capping layer thicknesses, indium content in the wells and state of relaxation, information which cannot be always obtained in (111)B samples from other characterization techniques such as photoluminescence or photocurrent spectroscopies.

1.
D. L.
Smith
,
Solid State Commun.
57
,
919
(
1986
).
2.
J.
Sánchez-Dehesa
,
J. L.
Sánchez-Rojas
,
C.
López
, and
R. J.
Nicholas
,
Appl. Phys. Lett.
61
,
1072
(
1992
).
3.
K. W.
Goossen
,
E. A.
Caridi
,
T. Y.
Chang
,
J. B.
Stark
,
D. A. B.
Miller
, and
R. A.
Morgan
,
Appl. Phys. Lett.
56
,
715
(
1990
).
4.
J. L.
Sánchez-Rojas
,
A.
Sacedón
,
F.
Calle
,
E.
Calleja
, and
E.
Muñoz
,
Appl. Phys. Lett.
65
,
2214
(
1994
).
5.
J. L.
Sánchez-Rojas
,
A.
Sacedón
,
A.
Sanz-Hervás
,
E.
Calleja
,
E.
Muñoz
,
E. J.
Abril
,
M.
Aguilar
, and
M.
López
,
Semicond. Sci. Technol.
10
,
1173
(
1995
).
6.
J. L. Sánchez-Rojas, A. Sacedón, E. Calleja, E. Muñoz, A. Sanz-Hervás, G. de Benito, and M. López, Phys. Rev. B (in press).
7.
V. S.
Speriosu
and
T.
Vreeland
, Jr.,
J. Appl. Phys.
56
,
1591
(
1984
).
8.
From the authors’ point of view some of the most interesting or pioneering papers reporting kinematical or dynamical simulation programs are the following: J. Burgeat and D. Taupin, Acta Cryst. A 24, 99 (1968); J. Burgeat and R. Colella, J. Appl. Phys. 40, 3505 (1969); M. A. G. Halliwell, M. H. Lyons, and M. J. Hill, J. Cryst. Growth 68, 523 (1984); M. J. Hill, B. K. Tanner, M. A. G. Halliwell, and M. H. Lyons, J. Appl. Cryst. 18, 446 (1985); W. J. Bartels, J. Hornstra, and D. J. W. Lobeek, Acta Cryst. A 42, 539 (1986); L. Tapfer and K. Ploog, Phys. Rev. B 33, 5565 (1986); P. F. Fewster and C. J. Curling, J. Appl. Phys. 62, 4154 (1987); H. Holloway, J. Appl. Phys. 67, 6229 (1990); D. K. Bowen, N. Loxley, B. K. Tanner, L. Cooke, and M. A. Capano, Mater. Res. Soc. Symp. Proc. 208, 113 (1991); R. Zaus, J. Appl. Cryst. 26, 801 (1993); Y. C. Chen and P. K. Bhattacharya, J. Appl. Phys. 73, 7389 (1993). See also Ref. 7.
9.
A. Sanz-Hervás, A. Sacedón, E. J. Abril, J. L. Sánchez-Rojas, C. Villar, G. de Benito, M. Aguilar, M. López, E. Calleja, and E. Muñoz, Adv. X-ray Anal. 39 (1996) (in press).
10.
A. Sacedón, Ph.D. thesis, 1995.
11.
N.
Loxley
,
B. K.
Tanner
, and
D. K.
Bowen
,
J. Appl. Cryst.
28
,
314
(
1995
).
12.
S.
Takagi
,
J. Phys. Soc. Jpn.
26
,
1239
(
1969
).
13.
D.
Taupin
,
Bull. Soc. Fr. Minéral. Cristallogr.
87
,
469
(
1964
).
14.
J.
Hornstra
and
W. J.
Bartels
,
J. Cryst. Growth
44
,
513
(
1978
).
15.
X.
He
and
M.
Razeghi
,
J. Appl. Phys.
73
,
3284
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.