An optically pumped GaN‐based vertical cavity surface emitting laser (VCSEL) is demonstrated. Laser emission near 363 nm is observed at room temperature from the surface of a VCSEL structure optically pumped along a cleaved sample edge by focused light from a nitrogen laser. The VCSEL structure, which was grown on a sapphire substrate by metalorganic vapor phase epitaxy, consists of a 10 μm GaN active region sandwiched between 30‐period Al0.40Ga0.60N–Al0.12Ga0.88N Bragg reflectors. At optical pump intensities above ∼2.0 MW/cm2, a narrow (<5 Å) laser mode at 363.5 nm emerges from the GaN photoluminescence spectrum. This mode becomes the dominant feature of the spectrum at higher pump powers, and additional modes appear ∼1.3 nm above and below this mode at 362.1 nm and 364.8 nm. The ∼1.3 nm mode spacing corresponds closely with the 1.1 nm spacing predicted from an electromagnetics model of the VCSEL structure.

1.
S.
Nakamura,
T.
Mukai
, and
M.
Senoh,
Appl. Phys. Lett.
64
,
1687
(
1995
).
2.
S.
Nakamura,
M.
Senoh,
N.
Iwasa
, and
S.
Nagahama,
Appl. Phys. Lett.
67
,
1868
(
1995
).
3.
H.
Amano,
T.
Asahi
, and
I.
Akasaki,
Jpn. J. Appl. Phys.
29
,
L205
(
1990
).
4.
M. A.
Kahn,
D. T.
Olsen,
J. M.
Van Hove
, and
J. N.
Kuznia,
Appl. Phys. Lett.
58
,
1515
(
1991
).
5.
K.
Yung,
J.
Lee,
J.
Koo,
M.
Rubin,
N.
Newman
, and
J.
Ross,
Appl. Phys. Lett.
64
,
1135
(
1994
).
6.
M. A.
Kahn,
S.
Krishnankutty,
R. A.
Skogman,
J. N.
Kuznia,
D. T.
Olson
, and
T.
George,
Appl. Phys. Lett.
65
,
520
(
1995
).
7.
H.
Amano,
T.
Tanaka,
Y.
Kunii,
K.
Kato,
S. T.
Kim
, and
I.
Akasaki,
Appl. Phys. Lett.
64
,
1377
(
1994
).
8.
S. T.
Kim,
H.
Amano,
I.
Akasaki
, and
N.
Koide,
Appl. Phys. Lett.
64
,
1535
(
1994
).
9.
D. A. S. Loeber, J. M. Redwing, M. A. Tischler, and N. G. Anderson, Electronic Materials Conference, Charlotteville, June 22, 1995, paper M4.
10.
X. H.
Yang,
T. J.
Schmidt,
W.
Shan,
J. J.
Song
, and
B.
Goldenberg,
Appl. Phys. Lett.
66
,
1
(
1995
).
11.
A. S.
Zubrilov,
V. I.
Nikolaev,
D. V.
Tsvetkov,
V. A.
Dmitriev,
K. G.
Irvine,
J. A.
Edmond
, and
C. H.
Carter
, Jr.,
Appl. Phys. Lett.
67
,
533
(
1995
).
12.
S.
Nakamura,
M.
Senoh,
S.
Nagahama,
N.
Iwasa,
T.
Yamada,
T.
Matsushita,
H.
Kiyoku
, and
Y.
Sugimoto,
Jpn. J. Appl. Phys.
35
,
L74
(
1996
).
13.
H. Amano, N. Watanabe, N. Koide, and I. Akasaki, Jpn. J. Appl. Phys. 32, L1000 (1993). The empirical form for the energy-dependent refractive index is n(E)=n1+A/[1+(|E−Eg|/B)], where A=0.53 eV, B=0.4 eV, n1 is the long-wavelength refractive index, and Eg is the energy band gap. In this work, we have taken n1 to be 2.28, 2.26, and 2.23 and Eg to be 3.42, 3.75, and 4.53 eV for GaN, Al0.12Ga0.88N, and Al0.40Ga0.60N, respectively.
14.
These reflectivities are lower than those typical of VCSEL structures. They are reasonable for our structure, however, given that the 10 μm active layer is thicker than typical VCSEL active regions by a factor of ∼102.
15.
See, for example, J. J. dudley, M. Ishikawa, D. I. Babic, B. I. Miller, R. Mirin, W. B. Jiang, J. E. Bowers, and E. L. Hu, Appl. Phys. Lett. 61, 3095 (1992); P. D. Floyd, J. L. Merz, H. Luo, J. K. Furdyna, T. Yokogawa, and Y. Yamada, ibid.66, 2929 (1995).
This content is only available via PDF.
You do not currently have access to this content.