Hot‐electron bolometric (HEB) mixing of 9.6 μm infrared radiation from two lasers in high‐quality YBa2Cu3O7−δ (YBCO) patterned thin film has been demonstrated. A heterodyne measurement showed an intermediate frequency (IF) bandwidth of 18 GHz, limited by our measurement system. An intrinsic limit of 100 GHz is predicted. Between 0.1 and 1 GHz intermediate frequency, temperature fluctuations with an equivalent output noise temperature Tfl up to ∼150 K, contributed to the mixer noise while Johnson noise dominated above 1 GHz. The overall conversion loss at 77 K at low intermediate frequencies was measured to be ∼25 dB, of which 13 dB was due to the coupling loss. The HEB mixer is very promising for use in heterodyne receivers within the whole infrared range.

1.
E. R.
Brown,
K. K.
McIntosh,
F. W.
Smith
, and
M. J.
Manfra,
Appl. Phys. Lett.
62
,
1513
(
1993
).
2.
J. Lemaire, J. C. Depannemaecker, F. Herlemont, Y. Riant, and J. Fleury, Proc. SPIE 588, 26 (1985).
3.
E. N.
Grossman,
L. R.
Vale,
D. A.
Rudman,
K. M.
Evenson
, and
L. R.
Zink,
IEEE Trans. Appl. Supercond.
5
,
3061
(
1995
).
4.
E. M. Gershenzon, I. G. Gogidze, Yu. P. Gousev, A. I. Elant’ev, G. N. Gol’tsman, B. S. Karasik, and A. D. Semenov, Sov. J. Supercond. 3, 1582 (1990); H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, IEEE Trans. Microwave Theory Tech. 43, 938 (1995); A. Skalare, W. R. McGrath, B. Bumble, H. G. LeDuc, P. J. Burke, A. A. Verheijen, and D. E. Prober, IEEE Trans. Appl. Supercond. 5, 2236 (1995).
5.
G. N. Gol’tsman, B. S. Karasik, O. V. Okunev, A. L. Dzardanov, E. M. Gershenzon, H. Ekström, S. Jacobsson, and E. Kollberg, IEEE Trans. Appl. Supercond. 5, 3065 (1995); H. Ekström, B. S. Karasik, E. Kollberg, G. N. Gol’tsman, and E. M. Gershenzon, Proc. Sixth Int. Symp. Space Terahertz Techn., 21–23 March 1995, Caltech, Pasadena, CA (to be published); B. S. Karasik, G. N. Gol’tsman, B. M. Voronov, S. I. Svechnikov, E. M. Gershenzon, H. Ekström, S. Jacobsson, E. Kollberg, and K. S. Yngvesson, IEEE Trans. Appl. Supercond. 5, 2232 (1995).
6.
M.
Lindgren,
M. A.
Zorin,
V.
Trifonov,
M.
Danerud,
D.
Winkler,
B. S.
Karasik,
G. N.
Gol’tsman
, and
E. M.
Gershenzon,
Appl. Phys. Lett.
65
,
3398
(
1994
).
7.
M.
Danerud,
D.
Winkler,
M.
Lindgren,
M.
Zorin,
V.
Trifonov,
B. S.
Karasik,
G. N.
Gol’tsman
, and
E. M.
Gershenzon,
J. Appl. Phys.
76
,
1902
(
1994
).
8.
M.
Lindgren,
V.
Trifonov,
M.
Zorin,
M.
Danerud,
D.
Winkler,
B. S.
Karasik,
G. N.
Gol’tsman
, and
E. M.
Gershenzon,
Appl. Phys. Lett.
64
,
3036
(
1994
).
9.
B. S. Karasik and A. I. Elantev, Proc. Sixth Int. Symp. Space Terahertz Techn., 21–23 March 1995, Caltech, Pasadena, CA (to be published).
10.
E. M.
Gershenzon,
G. N.
Gol’tsman,
A. D.
Semenov
, and
A. V.
Sergeev,
Solid State Commun.
76
,
493
(
1990
).
11.
F. A.
Hegmann,
D.
Jacobs-Perkins,
C.-C.
Wang,
S. H.
Moffat,
R. A.
Hughes,
J. S.
Preston,
M.
Currie,
P. M.
Fauchet,
T. Y.
Hsiang
, and
R.
Sobolewski,
Appl. Phys. Lett.
67
,
285
(
1995
).
12.
H.
Ekström
and
B.
Karasik,
Appl. Phys. Lett.
66
,
3212
(
1995
).
13.
D. L. Spears, Proc. SPIE 227, 108 (1980).
This content is only available via PDF.
You do not currently have access to this content.