Quasiequilibrium nonlinear optical absorption spectra are computed for semiconductor superlattices. The theory generalizes the semiconductor Bloch equations to describe anisotropic structures. The equation for the interband polarization is solved numerically and the carrier‐density dependent optical nonlinearities are computed. Starting from excitonic absorption, with increasing density exciton saturation and the development of gain is observed. The dependence of the gain spectra on structural parameters of the superlattice is discussed.
REFERENCES
1.
G. Bastard, Wave Mechanics of Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, 1989).
2.
For a textbook discussion see, H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd ed. (World Scientific, Singapore 1994) and references therein.
3.
4.
M. F.
Pereira,
Jr., I.
Galbraith,
S. W.
Koch
, and G.
Duggan,
Phys. Rev. B
42
, 7084
(1990
).5.
N. Linder, W. Geisselbrecht, G. Philipp, K. H. Schmidt, and G. H. Döhler, J. Phys. IV France 3, 195 (1993).
6.
K. H.
Schmidt,
N.
Linder,
G. H.
Döhler,
H. T.
Grahn,
K.
Ploog
, and H.
Schneider,
Phys. Rev. Lett.
72
, 2769
(1994
).7.
8.
Y.
Yamada,
Y.
Masumoto,
J. T.
Mullins
, and T.
Taguchi,
Appl. Phys. Lett.
61
, 2190
(1992
).9.
10.
11.
12.
For light propagating in the growth direction of the superlattice the optical dipole matrix element is given by f is again the superlattice form factor (Ref. 11). Using the longitudinal-transverse splitting in GaAs =0.08 mV, the exciton Bohr radius of 132 Å and the background dielectric constant ε=12.9, we have determined =4.5 Å, e is the electron charge.
This content is only available via PDF.
© 1995 American Institute of Physics.
1995
American Institute of Physics
You do not currently have access to this content.