We report direct measurements of nonequilibrium electron distributions and electron drift velocities in a GaAs‐based pin nanostructure semiconductor by using transient subpicosecond Raman spectroscopy. Experimental conditions are such that the velocity overshoot phenomenon dominates the transport properties of the photoexcited carriers. These experimental results are compared with ensemble Monte Carlo calculations.

1.
See, for example, J. Shah, Solid-State Electron. 32, 1051 (1989).
2.
D. K. Ferry, H. L. Grubin, and G. J. Iafrate, in Semiconductors Probed by Ultrafast Laser Spectroscopy, edited by R. R. Alfano (Academic, New York, 1984), Vol. 1, p. 413.
3.
E. Constant, in Hot Electron Transport in Semiconductors, edited by L. Reggiani, Topics in Applied Physics (Springer, Berlin, 1985), Vol. 58, p. 227.
4.
J. Shah and R. F. Leheny, in Semiconductors Probed by Ultrafast Laser Spectroscopy, edited by R. R. Alfano (Academic, New York, 1984), Vol. 1, p. 45.
5.
J. G.
Ruch,
IEEE Trans. Electron Devices
ED-14
,
652
(
1972
).
6.
T. J.
Maloney
and
J.
Frey,
J. Appl. Phys.
48
,
781
(
1977
).
7.
See, for example, D. K. Ferry, Semiconductors (Macmillan, New York, 1991).
8.
C. V.
Shank,
R. L.
Fork,
B. I.
Greene,
F. K.
Reinhart
, and
R. A.
Logan,
Appl. Phys. Lett.
38
,
104
(
1981
).
9.
K. E.
Meyer,
M.
Pessot,
G.
Mourou,
R. O.
Grondin
, and
S. N.
Chamoun,
Appl. Phys. Lett.
53
,
2254
(
1988
).
10.
W.
Sha,
T. B.
Norris,
W. J.
Schaff
, and
K. E.
Meyer,
Phys. Rev. Lett.
67
,
2553
(
1991
).
11.
K. T.
Tsen
and
H.
Morkoç,
Phys. Rev. B
B38
,
5615
(
1988
).
12.
M. V. Klein, in Light Scattering in Solids I, edited by M. Cardona and G. Guntherodt, Topics in Applied Physics (Springer, New York, 1983), Vol. 8, p. 151.
13.
G. Abstreiter, M. Cardona, and A. Pinczuk, in Light Scattering in Solids III, edited by M. Cardona and G. Guntherodt, Topics in Applied Physics (Springer, New York, 1983), Vol. 51, p. 5.
14.
J. C.
Tsang
and
J. A.
Kash,
Phys. Rev. B
B34
,
6003
(
1986
).
15.
D. S.
Kim
and
P. Y.
Yu,
Phys. Rev. Lett.
6
,
946
(
1990
).
16.
C. L.
Collins
and
P. Y.
Yu,
Phys. Rev. B
B30
,
4501
(
1984
).
17.
D. S.
Kim
and
P. Y.
Yu,
Appl. Phys. Lett.
56
,
2210
(
1990
).
18.
D. S. Kim and P. Y. Yu, Phys. Rev. B 43, 4158 (1991). Here, it was shown that under similar experimental conditions to ours except that E=0, the electron temperature reached as high as 600 K. It is expected that the electron temperature should be even higher in the presence of an applied electric field such as in our experiments.
19.
E. D. Grann, S. J. Sheih, K. T. Tsen, O. F. Sankey, S. E. Günçer, D. K. Ferry, A. Salvador, A. Botcharev, and H. Morkoç, Phys. Rev. B 51, 1631 (1995). In this reference, the assumption that there were negligible SPS contributions beyond 600 cm−1 is justified by our ensemble Monte Carlo calculations (see Fig. 2).
20.
E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957); Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1966), Vol. 1, p. 75.
21.
M. A. Osman and D. K. Ferry, Phys. Rev. B 36, 6018 (1987). Here, it was shown that hot photoexcited carriers relax into a hot distribution characterized by an electron temperature in less than 0.5 ps.
22.
C. Chia, O. F. Sankey, and K. T. Tsen, Mod. Phys. Lett. B 7, 331 (1993). This argument becomes clear when one neglects the effects of electron collision and the momentum dependence of the matrix element and considers the laser pulse width ⩾500 fs in Eq. (24) of this reference.
23.
P.
Lugli
and
D. K.
Ferry,
Phys. Rev. Lett.
56
,
1295
(
1986
).
24.
D. K. Ferry, M. J. Kann, A. M. Kriman, and R. P. Joshi, Comp. Phys. Commun. 67, 119 (1991).
25.
A. M. Kriman, M. J. Kann, D. K. Ferry, and R. Joshi, Phys. Rev. Lett. 65, 1619 (1990); D. K. Ferry, A. M. Kriman, H. Hida, and S. Yamaguchi, Phys. Rev. Lett. 67, 633 (1991).
This content is only available via PDF.
You do not currently have access to this content.