The composition, growth mechanism, and phases of carbon nitride thin films obtained from the reaction of laser ablated carbon and atomic nitrogen have been investigated. The nitrogen composition was found to increase to a limiting value of 50% as the fluence was decreased for laser ablation at both 532 nm and 248 nm. Analysis of these data shows that the overall growth rate determines the nitrogen composition, and suggests that a surface reaction between carbon and nitrogen represents a key step in the growth mechanism. Infrared spectroscopy has also been used to assess the phases present in the carbon nitride thin films. The implications of these results to the stoichiometry of covalent carbon nitride are discussed.

1.
W. Schnick, Angew. Chem. Int. Ed. Engl. 32, 1580 (1993).
2.
C. M. Lieber and Z. J. Zhang, Adv. Mater. 6, 497 (1994).
3.
A. Y. Liu and M. L. Cohen, Science 245, 841 (1989); A. Y. Liu and M. L. Cohen, Phys. Rev. B 41, 10727 (1990).
4.
C.
Niu,
Y. Z.
Lu
, and
C. M.
Lieber,
Science
261
,
334
(
1993
).
5.
F.
Xiong,
R. P. H.
Chang
, and
C. W.
White,
Mater. Res. Soc. Symp. Proc.
285
,
587
(
1993
).
6.
J. Narayan, J. Reddy, N. Biunno, S. M. Kanetkar, P. Tiwari, and N. Parikh, Mater. Sci. Eng. B 26, 49 (1994).
7.
M. Y. Ming, X. Lin, V. P. Dravid, Y.-W. Chung, M. S. Wong, and W. D. Sproul, Surf. Coating Technol. 54/55, 360 (1992); M. Y. Chen, D. Li, X. Lin, V. P. Dravid, Y.-W. Chung, M.-S. Wong, and W. D. Sproul, J. Vac. Sci. Technol. A 11, 521 (1993).
8.
P. G. Kosky, R. H. Wilson, and M. F. Carbauskas, G. E. Res. and Dev. Rep. No. 93CRD109 (1993).
9.
K. M.
Yu,
M. L.
Cohen,
E. E.
Haller,
W. L.
Hansen,
A. Y.
Liu
, and
I. C.
Wu,
Phys. Rev. B
49
,
5034
(
1994
).
10.
H.-X. Han and B. Feldman, Solid State Commun. 65, 921 (1988); M. R. Wixom, J. Am. Ceram. Soc. 73, 1973 (1990); L. Maya, D. R. Cole, and E. W. Hagaman, J. Am. Ceram. Soc. 74, 1686 (1991).
11.
A. Y.
Liu
and
R. M.
Wentzcovitch,
Phys. Rev. B
50
,
10362
(
1994
).
12.
J. E. Pollard, Rev. Sci. Instrum. 63, 1771 (1992); S. J. Sibener, R. J. Buss, C. Y. Ng, and Y. T. Lee, ibid.51, 167 (1980).
13.
Film growth at a fluence below 0.8 J/cm2 (532 nm) is irreproducible since the carbon deposition rate by ablation becomes comparable to the atomic nitrogen induced etching rate.
14.
J. T.
Cheung
and
H.
Sankur,
Crit. Rev. Solid State Mater. Sci.
15
,
63
(
1988
).
15.
The small oxygen contamination peak at ∼0.72 MeV [e.g., Fig. 2(a)] corresponds to only surface oxide layer on the film.
16.
Composition results are reported for thick films since the homogeneity and purity can be reliably assessed in these materials. Higher nitrogen compositions (up to 58%) have been observed in thin (0.1 μm) films; however, in these films we believe that impurities at the substrate/film interface contribute to the measured nitrogen composition (Z. J. Zhang and C. M. Lieber, unpublished results).
17.
J. Kouvetakis, A. Bandari, M. Todd, B. Wilkens, and N. Cave, Chem. Mater. 6, 811 (1994).
18.
D.
Li,
Y.-W.
Chung,
S.
Yang,
M. -S.
Wong,
F.
Adibi
, and
W. D.
Sproul,
J. Vac. Sci. Technol. A
12
,
1470
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.