Silicon dioxide (SiO2) films, with qualities approaching to those of thermal oxide, were deposited at 40 °C in a helical resonator plasma reactor from tetraethylorthosilicate (TEOS) and oxygen discharge. The films were characterized using transmission infrared spectroscopy, variable angle spectroscopic ellisometry, and wet etch rate measurements. It was found that the TEOS/O2 ratio, ℜ, in plasma enhanced chemical vapor deposition of SiO2 is as important a parameter as the substrate temperature. Using low TEOS/O2 ratio (ℜ<1:20), high quality SiO2 films could be deposited by PECVD at room temperature. At high TEOS/O2 ratio, particularly at low temperature, ethoxy ligands of the TEOS molecule are incorporated into the film disrupting the connectedness of the SiO4 tetrahedra resulting in porous, low density films with high OH content.

1.
W.
Kulisch
,
T.
Lippmann
, and
R.
Kassing
,
Thin Solid Films
174
,
57
(
1989
).
2.
C. S.
Pai
and
C.-P.
Chang
,
J. Appl. Phys.
68
,
793
(
1990
).
3.
C. S.
Pai
,
J. F.
Miner
, and
P. D.
Foo
,
J. Electrochem. Soc.
139
,
850
(
1992
).
4.
S. K.
Ray
,
C. K.
Maiti
,
S. K.
Lahiri
, and
N. B.
Chakrabarti
,
J. Vac. Sci. Technol. B
10
,
1139
(
1992
).
5.
G.
Tochitani
,
M.
Shimozuma
, and
H.
Tagashira
,
J. Vac. Sci. Technol. A
11
,
400
(
1993
).
6.
A.
Goullet
,
C.
Charles
,
P.
Garcia
, and
G.
Turban
,
J. Appl. Phys.
74
,
6876
(
1993
).
7.
E. P.
Valcheva
and
K. G.
Germanova
,
Superlattices Microstruct.
10
,
319
(
1991
).
8.
E. P.
Valcheva
and
K. G.
Germanova
,
Mater. Lett.
7
,
465
(
1989
).
9.
J. D.
Lin
,
Y. K.
Su
,
S. J.
Chang
,
M.
Yokoyama
, and
F. Y.
Juang
,
J. Vac. Sci. Technol. A
12
,
7
(
1994
).
10.
S. C. Deshmukh and E. S. Aydil (unpublished).
11.
C.
Charles
,
P.
Garcia
,
B.
Grolleau
, and
G.
Turban
,
J. Vac. Sci. Technol. A
10
,
1407
(
1992
).
12.
N.
Selamoglu
,
J. A.
Mucha
,
D. E.
Ibbotson
, and
D. L.
Flamm
,
J. Vac. Sci. Technol. B
7
,
1345
(
1989
).
13.
J. A. Mucha, D. Hess, and E. S. Aydil, in Introduction to Microlithography, 2nd ed. edited by L. F. Thompson, C. G. Wilson, and M. J. Bowden (American Chemical Society, Washington, DC, 1994), Chap. 5, p. 377.
14.
J. M.
Cook
,
D. E.
Ibbotson
, and
D. L.
Flamm
,
J. Vac. Sci. Technol. B
8
,
1
(
1990
).
15.
J.
Hopwood
,
Plasma Sources Sci. Technol.
1
,
109
(
1992
).
16.
E. S.
Aydil
,
R. A.
Gottscho
, and
Y. J.
Chabal
,
Pure Appl. Chem.
66
,
1381
(
1994
).
17.
Z.
Zhou
,
E. S.
Aydil
,
R. A.
Gottscho
,
Y. J.
Chabal
, and
R.
Reif
,
J. Electrochem. Soc.
140
,
3316
(
1993
).
18.
J. A.
Woolam
,
P. G.
Snyder
, and
H.
Yao
,
SPIE Proc. Ser.
1678
,
246
(
1992
).
19.
Y. M.
Xiong
,
P. G.
Snyder
,
J. A.
Woolam
, and
E. R.
Krosche
,
J. Vac. Sci. Technol. A
10
,
950
(
1992
).
20.
We chose 40 °C as the lowest deposition temperature because the reactor walls are maintained at 40 °C in order to avoid excessive SiO2 growth on the chamber walls. Films with qualities similar to those grown at 40 °C can be grown even at room temperature.
21.
C. T.
Kirk
,
Phys. Rev. B
38
,
1255
(
1988
).
22.
L. L.
Tedder
,
J. E.
Crowell
, and
M. A.
Logan
,
J. Vac. Sci. Technol. A
9
,
1002
(
1991
).
23.
J. E.
Crowell
,
L. L.
Tedder
,
H.-C.
Cho
,
F. M.
Cascarano
, and
M. A.
Logan
,
J. Electron. Spectrosc. Rel. Phenomena
54
,
1097
(
1990
).
24.
B.
Fowler
and
E.
O’Brien
,
J. Vac. Sci. Technol. B
12
,
441
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.