Tapping mode atomic force microscopy in liquids gives a substantial improvement in imaging quality and stability over standard contact mode. In tapping mode the probe‐sample separation is modulated as the probe scans over the sample. This modulation causes the probe to tap on the surface only at the extreme of each modulation cycle and therefore minimizes frictional forces that are present when the probe is constantly in contact with the surface. This imaging mode increases resolution and reduces sample damage on soft samples. For our initial experiments we used a tapping frequency of 17 kHz to image deoxyribonucleic acid plasmids on mica in water. When we imaged the same sample region with the same cantilever, the plasmids appeared 18 nm wide in contact mode and 5 nm in tapping mode.

1.
G.
Binnig
,
C. F.
Quate
,
C. H.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
D.
Rugar
and
P. K.
Hansma
,
Phys. Today
43
,
23
(
1990
).
3.
B.
Drake
,
C. B.
Prater
,
A. L.
Weisenhorn
,
S. A.
Gould
,
T. R.
Albrecht
,
C. F.
Quate
,
D. S.
Cannell
,
H. G.
Hansma
, and
P. K.
Hansma
,
Science
243
,
1586
(
1989
).
4.
A. L.
Weisenhorn
,
P. K.
Hansma
,
T. R.
Albrecht
, and
C. F.
Quate
,
Appl. Phys. Lett.
54
,
2651
(
1989
).
5.
U.
Hartmann
,
Phys. Rev. B
43
,
2404
(
1991
).
6.
A. L.
Weisenhorn
,
D.
Maivald
,
H.-J.
Butt
, and
P. K.
Hansma
,
Phys. Rev. B
45
,
11226
(
1992
).
7.
D. Anselmetti, R. Lüthi, E. Meyer, T. Richmond, M. Dreier, J. E. Frommer, and H. J. Güntherodt, Nanotechnology (in press).
8.
J. J.
Saenz
,
N.
Garcia
,
P.
Grutter
,
E.
Meyer
,
H.
Heinzelmann
,
R.
Wiesendanger
,
L.
Rosenthaler
,
H. R.
Hidber
, and
H. J.
Guntherodt
,
J. Appl. Phys.
62
,
4293
(
1987
).
9.
Y.
Martin
and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
50
,
1455
(
1987
).
10.
V. Elings and J. Gurley, U. S. Patent No. 5, 266,801 (1993).
11.
Q.
Zong
,
D.
Innis
,
K.
Kjoller
, and
V. B.
Elings
,
Surf. Sci. Lett.
290
,
L688
(
1993
).
12.
H. G.
Hansma
,
R. L.
Sinsheimer
,
J.
Groppe
,
T. C.
Bruice
,
V.
Elings
,
G.
Gurley
,
M.
Bezanilla
,
I. A.
Mastrangelo
,
P. V. C.
Hough
, and
P. K.
Hansma
,
Scanning
15
,
296
(
1993
).
13.
P.
Maivald
,
H.-J.
Butt
,
S. A. C.
Gould
,
C. B.
Prater
,
B.
Drake
,
J. A.
Gurley
,
V. B.
Elings
, and
P. K.
Hansma
,
Nanotechnology
2
,
103
(
1991
).
14.
M.
Radmacher
,
R. W.
Tilllmann
, and
H. E.
Gaub
,
Biophys. J.
64
,
735
(
1993
).
15.
C. A. J. Putman, K. O. van der Werf, B. G. de Grooth, N. F. van Hulst, and J. Greve (unpublished).
16.
F.
Ohnesorge
and
G.
Binnig
,
Science
260
,
1451
(
1993
).
17.
A. L.
Weisenhorn
,
P. K.
Hansma
,
T. R.
Albrecht
, and
C. F.
Quate
,
Appl. Phys. Lett.
54
,
2651
(
1989
).
18.
Y.
Akama
,
E.
Nishimura
,
A.
Sakai
, and
H.
Murakami
,
J. Vac. Sci. Technol. A
8
,
429
(
1990
);
D.
Keller
,
D.
Deputy
,
A.
Alduino
, and
K.
Luo
,
Ultramicroscopy B
42–44
,
1481
(
1992
);
D.
Keller
and
C. C.
Chung
,
Surf. Sci.
253
,
353
(
1991
);
K. L.
Lee
and
M.
Hatzakis
,
J. Vac. Sci. Technol.
7
,
1941
(
1989
).
19.
The supertip was grown by one of us (D.V.) on an oxide sharpened, silicone nitride Nanoprobe cantilever from Digital Instruments.
20.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
,
2
(
1993
).
21.
H. G.
Hansma
,
M.
Bezanilla
,
F.
Zehhausern
,
M.
Adrian
, and
R. L.
Sinsheimer
,
Nucl. Acids Res.
21
,
505
(
1993
).
22.
Y. L.
Lybchenko
,
L. S.
Shlyakhtenko
,
R. E.
Harrington
,
P. I.
Oden
, and
S. M.
Lindsay
,
Proc. Natl. Acad. Sci.
90
,
2137
(
1993
).
23.
Y. L.
Lybchenko
,
P. I.
Oden
,
D.
Lampuer
,
S. M.
Lindsay
, and
K. A.
Dunker
,
Nucl. Acid. Res.
21
,
1117
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.