We show from transport investigations that Ge doped GaAs can be either semimetallic or semiconducting depending on hydrostatic pressure and previous sample illumination. This property results from a unique crossover of two states of the Ge donor in GaAs in their energetic position under pressure. The experimental results obtained make it possible to identify the nature of these Ge‐donor states: The drastic enhancement of the electron mobility after illumination is taken as evidence of the electron transfer from the two‐electron DX state to a neutral, localized, and unrelaxed state of the Ge donor.

1.
For a review, see
P. M.
Mooney
,
J. Appl. Phys.
67
,
R1
(
1990
);
P. M.
Mooney
,
Semicond. Sci. Technol.
6
,
B1
(
1991
).
2.
J. E.
Dmochowski
,
P. D.
Wang
,
R. A.
Stradling
, and
W.
Trzeciakowski
,
Mater. Sci. Forum
83/87
,
751
(
1992
).
3.
J. M.
Luttinger
and
W.
Kohn
,
Phys. Rev.
97
,
1899
(
1970
).
4.
Z.
Wasilewski
and
R. A.
Stradling
,
Semicond. Sci. Technol.
1
,
264
(
1986
).
5.
A.
Mandray
,
S.
Huant
, and
B.
Etienne
,
Europhys. Lett.
20
,
181
(
1992
) and Refs. therein.
6.
The Ds0 (Ref. 2) and the Ds (Ref. 3) states occur only below the Mott transition, i.e., below a critical doping level which depends on the specific state under consideration.
7.
D. J.
Chadi
and
K. J.
Chang
,
Phys. Rev. Lett.
61
,
873
(
1988
);
D. J.
Chadi
and
K. J.
Chang
,
Phys. Rev. B
39
,
10063
(
1989
).
8.
J. Dabrowski, M. Schemer, and R. Strehlow, in Proceedings ICPS-20, edited by E. M. Anastassakis and J. D. Joannopoulos (World Scientific, Singapore, 1990), p. 489.
9.
J.
Dabrowski
and
M.
Scheffler
, in Defects in Semiconductors,
Mater. Sci. Forum
83–87
,
735
(
1992
).
10.
P.
Wisniewski
,
P.
van der Wei
,
T.
Suski
,
J.
Singleton
,
C.
Skierbiszewski
,
L. J.
Giling
,
R.
Warburton
,
P. G.
Walker
,
N. J.
Mason
,
R. J.
Nicholas
, and
M.
Eremets
,
Jpn. J. Appl. Phys.
32
, Suppl.
32–1
218
(
1993
).
11.
R. E.
Peale
,
Y.
Mochizuki
,
H.
Sun
, and
G. D.
Watkins
,
Semicond. Sci. Technol.
6
,
B92
(
1991
).
12.
K.
Khachaturyan
,
E.
Weber
, and
M.
Kaminska
,
Mater. Sci. Forum
15
,
38
(
1989
).
13.
L.
Dobaczewski
,
P.
Kaczor
,
M.
Missous
,
Z. R.
Zytkiewicz.
,
F.
Saleemi
,
P.
Dawson
, and
A. R.
Peaker
,
Phys. Rev. Lett.
68
,
2508
(
1992
).
14.
G.
Brunthaler
,
K.
Ploog
, and
W.
Jantsch
,
Phys. Rev. Lett.
63
,
2276
(
1989
).
15.
V.
Mosser
,
S.
Contreras
,
J. L.
Robert
,
R.
Piotrzkowski
,
W.
Zawadzki
, and
J. F.
Rochette
,
Phys. Rev. Lett.
66
,
1737
(
1991
).
16.
W.
Jantsch
,
Z.
Wilamowski
, and
G.
Ostermayer
,
Semicond. Sci. Technol.
6
,
B48
(
1991
);
W.
Jantsch
,
Z.
Wilamowski
, and
G.
Ostermayer
,
Mater. Sci. Forum
83–87
,
799
(
1992
).
17.
G. D.
Watkins
,
Semicond. Sci. Tech.
6
,
B111
(
1991
).
18.
Z.
Wilamowski
,
J.
Kossut
,
T.
Suski
,
P.
Wisniewski
, and
L.
Dmowski
,
Semicond. Sci. Technol.
6
,
B34
(
1991
).
19.
Z.
Wilamowski
,
J.
Kossut
,
W.
Jantsch
, and
G.
Ostermayer
,
Semicond. Sci. Technol.
6
,
B38
(
1991
).
20.
Z.
Wilamowski
,
W.
Jantsch
,
G.
Ostermayer
, and
J.
Kossut
,
Mater. Sci. Forum
83–87
,
805
(
1992
).
21.
W.
Jantsch
,
Z.
Wilamowski
, and
G.
Ostermayer
,
Phys. Scr. T
45
,
140
(
1992
).
22.
These numbers compare well with those given recently by M. Baj, L. Dmowski, T. Slupinski, and D. Wasik, in Proceedings of the 17th International Conference on Defects in Semiconductors, edited by H. Heinrich and W. Jantsch (in press).
23.
W.
Jantsch
,
K.
Wnstel
,
O.
Kumagai
, and
P.
Vogl
,
Phys. Rev. B
25
,
5515
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.