Real‐time, insitu observations of surface chemistry during the remote plasma passivation of GaAs is reported herein. Using attenuated total reflection Fourier transform infrared spectroscopy, the relative concentrations of ‐As‐O, ‐As‐H, ‐H2O, and ‐CH2 bonds are measured as a function of exposure to the effluent from a microwave discharge through NH3, ND3, H2, and D2. The photoluminescence intensity (PL) from the GaAs substrate is monitored simultaneously and used qualitatively to estimate the extent of surface state reduction. It was found that, while the ‐CHx(x = 2,3) and ‐As‐O concentrations are reduced rapidly, the rates at which the ‐As‐H concentration and the PL intensity increase are relatively slow. The concentration of ‐H2O on the GaAs surface increases throughout the process as surface arsenic oxides and the silica reactor walls are reduced by atomic hydrogen. These observations suggest that removal of elemental As by reaction with H at the GaAs–oxide interface limits the passivation rate.

1.
W. E.
Spicer
,
I.
Lindau
,
P.
Skeath
, and
C. Y.
Su
,
J. Vac. Sci. Technol.
17
,
1019
(
1980
);
J. M.
Woodall
and
J. L.
Freeouf
,
J. Vac. Sci. Technol.
19
,
794
(
1981
).
2.
G. P.
Schwartz
,
G. J.
Gualtieri
,
J. E.
Griffith
, and
B.
Schwartz
,
J. Electrochem. Soc.
128
,
410
(
1981
).
3.
R. J.
Nelson
,
J. S.
Williams
,
H. J.
Leamy
,
B.
Miller
,
H. C.
Casey
, Jr.
,
B. A.
Parkinson
, and
A.
Heller
,
Appl. Phys. Lett.
36
,
76
(
1980
);
C. J.
Sandroff
,
R. N.
Nottenburg
,
J.-C.
Bischoff
, and
R.
Bhat
,
Appl. Phys. Lett.
51
,
33
(
1987
); ,
Appl. Phys. Lett.
F. S.
Turco
,
C. J.
Sandroff
,
M. S.
Hedge
, and
M. C.
Tamargo
,
J. Vac. Sci. Technol. B
8
,
856
(
1990
).
4.
J. I.
Pankove
,
J. E.
Berkeyheiser
,
S. J.
Kilpatrick
, and
C. W.
Magee
,
J. Electron. Mater.
12
,
359
(
1983
).
5.
P.
Friedel
and
J. P.
Landesman
,
Philos. Mag. B
55
,
711
(
1987
).
6.
A.
Callegari
,
P. D.
Hoh
,
D. A.
Buchanan
, and
D.
Lacey
,
Appl. Phys. Lett.
54
,
332
(
1989
).
7.
Z.
Lu
,
M. T.
Schmidt
,
D.
Chen
,
R. M.
Osgood
, Jr.
,
W. M.
Holber
,
D. V.
Podlesnik
, and
J.
Forster
,
Appl. Phys. Lett.
58
,
1143
(
1991
).
8.
F.
Capasso
and
G. F.
Williams
,
J. Electrochem. Soc.
129
,
821
(
1982
).
9.
J. B.
Theeten
,
S.
Gourrier
,
P.
Friedel
,
M.
Taillepied
,
D.
Arnoult
, and
D.
Benarroche
,
Mater. Res. Soc. Symp. Proc.
38
,
499
(
1985
).
10.
R. A.
Gottscho
,
B. L.
Preppernau
,
S. J.
Pearton
,
A. B.
Emerson
, and
K. P.
Giapis
,
J. Appl. Phys.
68
,
440
(
1990
);
E.
Yoon
,
R. A.
Gottscho
,
V. M.
Donnelly
, and
H. S.
Luftman
,
Appl. Phys. Lett.
60
,
2681
(
1992
).
11.
E. S.
Aydil
,
K. P.
Giapis
,
R. A.
Gottscho
,
V. M.
Donnelly
, and
E.
Yoon
,
J. Vac. Sci. Technol. B
11
,
195
(
1993
).
12.
K.
Mettler
,
Appl. Phys.
12
,
75
(
1977
);
R. R.
Chang
,
R.
Iyer
, and
D. L.
Lile
,
J. Appl. Phys.
61
,
1995
(
1987
);
D. E.
Aspnes
,
Surf. Sci.
132
,
406
(
1983
);
S.
Krawczyk
,
B.
Bailly
,
B.
Sautreuil
,
R.
Blanchet
, and
P.
Viktorovitch
,
Electron. Lett.
20
,
255
(
1984
).
13.
Y. J. Chabal, in Handbook of Semiconductors, edited by M. Balkanski (Elsevier, New York, 1993), Vol. 2;
Y. J. Chabal, in Internal Reflection Spectroscopy: Theory and Applications, edited by F. M. Mirabella, Jr. (Marcel Dekker, New York, 1992);
Y. J.
Chabal
,
Surf. Sci. Rep.
8
,
211
(
1988
);
K.
Kawamura
,
S.
Ishizuka
,
H.
Sakaue
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
30
,
3215
(
1991
).
14.
E. S. Aydil, Z. H. Zhou, R. A. Gottscho, and Y. Chabal (unpublished).
15.
R. A.
Gottscho
,
G.
Smolinsky
, and
R. H.
Burton
,
J. Appl. Phys.
53
,
5908
(
1982
).
16.
G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950).
17.
J. A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworth Group, Reading, MA, 1975), pp. 43–44, and references therein;
G. Socrates, Infrared Characteristic Group Frequencies (Wiley, New York, 1975), p. 144;
F. A.
Miller
,
G. L.
Carson
,
F. F.
Bentley
, and
W. H.
Jones
,
Spectrochim. Acta
16
,
135
(
1960
).
18.
L. H. Little, Infrared Spectra of Adsorbed Species (Academic, New York, 1966), Chap. 1, see also pp. 122–130.
19.
D. M.
Joseph
,
R. F.
Hicks
,
L. P.
Sadwick
, and
K. L.
Wang
,
Surf. Sci.
204
,
L271
(
1988
);
P. E.
Gee
and
R. F.
Hicks
,
J. Vac. Sci. Technol. A
10
,
892
(
1992
).
20.
Y. J.
Chabal
and
S. B.
Christman
,
Phys. Rev. B
29
,
6974
(
1984
).
21.
We note that some of this absorption can arise from NH3 physisorbed onto the surface with the -H2O. This will be addressed in more detail in a future publication (Ref. 14).
This content is only available via PDF.
You do not currently have access to this content.