Single crystals of Sr2RuO4 were grown by the floating zone melting technique. The crystals have the K2NiF4 structure and display a metallic resistivity behavior in the ab‐plane between 300 and 4.2 K (ρab≂10−4 Ω cm at 300 K). The in‐plane lattice mismatch between YBa2Cu3O7−δ (001) and Sr2RuO4 (001) is smaller than 1.3%, better than that to SrTiO3 {100}. Epitaxial films of YBa2Cu3O7−δ with Tc(R=0) as high as 86 K have been grown on Sr2RuO4 crystals. The epitaxial growth of YBa2Cu3O7−δ on Sr2RuO4 was revealed by four‐circle x‐ray diffraction as well as by transmission electron microscopy.

1.
A.
Callaghan
,
C. W.
Moeller
, and
R.
Ward
,
Inorg. Chem.
5
,
1572
(
1966
).
2.
J.
Randall
and
R.
Ward
,
J. Am. Chem. Soc.
81
,
2629
(
1959
).
3.
J. A.
Wilson
,
F. J.
Di Salvo
, and
S.
Mahajan
,
Adv. Phys.
24
,
117
(
1975
).
4.
W.
Primak
and
L. H.
Fuchs
,
Phys. Rev.
95
,
22
(
1954
).
5.
Chemistry and Physics of Carbon (Marcel Dekker, New York, 1973), Vol. 11, pp. 114–115.
6.
J.
Geerk
,
X. X.
Xi
,
H. C.
Li
,
W. Y.
Guan
,
P.
Kus
,
M.
Höbel
,
G.
Linker
,
O.
Meyer
,
F.
Ratzel
,
C.
Schultheiss
,
R.
Smithey
,
B.
Strehlau
, and
F.
Weschenfelder
,
Int. J. Mod. Phys. B
3
,
923
(
1989
).
7.
A.
Catana
,
R. F.
Broom
,
J. G.
Bednorz
,
J.
Mannhart
, and
D. G.
Schlom
,
Appl. Phys. Lett.
60
,
1016
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.