Tunneling spectroscopy of ultrathin (1.5 nm thick) SiO2 on degenerate Si structures and of hydrogen‐terminated Si surfaces is studied with scanning tunneling microscopy (STM) in an air ambient. Two kinds of tunneling spectra, i.e., normal‐site and defect‐site spectra, are observed for the oxide samples depending on measuring sites, while only the normal‐site spectra are observed for H‐terminated surfaces. The normal‐site spectra strongly depend on dopant types and reflect bulk band structures of Si. The defect‐site spectra show negative differential resistance (NDR) and the defect sites are identified on STM images as depressed areas. The origin of the NDR is ascribed to resonant tunneling through localized defects in the oxide.

1.
G.
Binnig
and
H.
Rohrer
,
Helv. Phys. Acta.
55
,
726
(
1982
);
G.
Binnig
and
H.
Rohrer
,
IBM J. Res. Develop.
30
,
355
(
1986
).
2.
M. E.
Welland
and
R. H.
Koch
,
Appl. Phys. Lett.
48
,
724
(
1986
).
3.
M. Tabe and M. Tanimoto, Proceedings of ’90 Solid State Devices and Materials (The Japan Society of Applied Physics, Sendai, Japan, 1990), p. 1119.
4.
M.
Tanimoto
and
Y.
Nakano
,
J. Vac. Sci. Technol. A
8
,
553
(
1990
).
5.
L. D.
Bell
,
W. J.
Kaiser
,
M. H.
Hecht
, and
F. J.
Grunthaner
,
Appl. Phys. Lett.
52
,
278
(
1988
).
6.
R. M.
Feenstra
and
J. A.
Stroscio
,
J. Vac. Sci. Technol. B
5
,
923
(
1987
).
7.
W. A.
Harrison
,
Phys. Rev.
123
,
85
(
1961
).
8.
W. E.
Dahlke
and
S. M.
Sze
,
Solid-State Electron.
10
,
865
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.