A multi‐band semi‐empirical tight‐binding method was used to calculate the band structures of Si1−xGex alloys coherently grown on (111) and (110) oriented Si1−yGey substrates. The results show that the lowest conduction band X5 at point X in the [001] directions of the Si1−xGex alloy is split into two bands with even and odd parities, due to the reduction of symmetry by strain. This is the first calculation that shows a kind of nonlinear band‐edge splitting in the coherently grown Si1−xGex alloys. The results here can be approximated by adding a new deformation potential Ξu to the linear deformation potential formula, which was used earlier for bulk Si under external [111] and [110] uniaxial stress cases. For coherently grown layers with a large lattice mismatch, the nonlinear splittings should not be neglected when analyzing the electronic properties.

1.
J. C.
Bean
,
L. C.
Feldman
,
A. T.
Fiory
,
S.
Nakahara
, and
I. K.
Robinson
,
J. Vac. Sci. Technol. A
2
,
436
(
1984
).
2.
B.
Kasper
,
H.
Kibbsl
,
H.
Jorke
,
H.
Brugger
,
E.
Friess
, and
G.
Abstreiter
,
Phys. Rev. B
38
,
3599
(
1988
).
3.
K. L.
Wang
,
R. P.
Karunasiri
,
J.
Park
,
S. S.
Rhee
, and
C. H.
Chern
,
Superlattices Microstructures
5
,
201
(
1989
).
4.
R. P. G.
Karunasiri
,
J. S.
Park
,
K. L.
Wang
, and
Li-Jen
Cheng
,
Appl. Phys. Lett.
56
,
1342
(
1990
).
5.
R.
People
,
Phys. Rev. B
32
,
1405
(
1985
).
6.
R.
People
, and
J. C.
Bean
,
Appl. Phys. Lett.
39
,
538
(
1986
).
7.
Q. M. Ma, K. L. Wang, and J. N. Schulman (unpublished).
8.
L.
Kleinman
,
Phys. Rev.
128
,
2614
(
1962
).
9.
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. B
32
,
3792
(
1985
).
10.
W.
Paul
,
J. Phys. Chem. Solids
8
,
196
(
1959
).
11.
J. C.
Hansel
, and
G.
Feher
,
Phys. Rev.
129
,
1041
(
1963
).
12.
I.
Balslev
,
Phys. Rev.
143
,
636
(
1966
).
13.
C. G.
Van de Walle
and
R. M.
Martin
,
Phys. Rev. B
34
,
5621
(
1986
).
14.
See, for example, M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964), pp. 18–93.
15.
Theo Hahn, International Tables for Crystallography “Space Group Symmetry” (D. Reidel, Holland, 1983), Vol. A, p. 534.
16.
D. K.
Wilson
and
G.
Feher
,
Phys. Rev.
124
,
1068
(
1961
).
17.
J. C.
Hensel
,
H.
Hasegawa
, and
M.
Nakayama
,
Phys. Rev. A
138
,
225
(
1965
).
18.
L. D.
Laude
,
F. H.
Pollak
, and
M.
Cardona
,
Phys. Rev. B
3
,
2623
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.