The electrochemical incorporation of hydrogen into n‐Si and n‐Ge has been studied by Fourier‐transform electrochemically modulated infrared spectroscopy. Fresh (111) silicon (resp., germanium) surfaces exhibit a vibrational band at 2080 (resp., 1960) cm−1 corresponding to a surface Si—H (resp., Ge—H) bond perpendicular to the surface. Prolonged cathodic treatment results in a new band at 2000 (resp., 1900) cm−1. The position and polarization dependence of this band indicate that it is associated with hydrogen inside the semiconductor lattice. These observations directly show for the first time that cathodically hydrogenated samples contain a thin, disordered, and highly hydrogenated layer, which is probably responsible for the improvement of the hydrogen evolution kinetics observed on these electrodes.

1.
S. J.
Pearton
,
J. W.
Corbett
, and
T. S.
Shi
,
Appl. Phys. A
43
,
153
(
1987
).
2.
M.
Cardona
,
Phys. Status Solidi B
118
,
463
(
1983
).
3.
G. S.
Oehrlein
,
J. L.
Lindstorm
, and
J. W.
Corbett
,
Phys. Lett. A
81
,
246
(
1981
).
4.
S. J.
Pearton
,
W. L.
Hanson
,
E. E.
Haller
, and
J. M.
Kahn
,
J. Appl. Phys.
55
,
1221
(
1984
).
5.
P. de Mierry, A. Etcheberry, and M. Aucouturier, in “Hydrogen in Semiconductors: Bulk and Surface Properties,” Proc. 6th Trieste Semiconductor Symposium, 27–31 August 1990, (to be published in Physica B, 1991 and J. Appl. Phys. 69, 1991).
6.
B.
Pajot
,
A.
Chari
,
M.
Aucouturier
,
M.
Astier
, and
A.
Chantre
,
Solid State Commun.
67
,
855
(
1988
).
7.
F.
Ozanam
and
J.‐N.
Chazalviel
,
Rev. Sci. Instrum.
59
,
242
(
1988
).
8.
A.
Venkateswara Rao
,
J.‐N.
Chazalviel
, and
F.
Ozanam
,
J. Appl. Phys.
60
,
60
(
1986
).
9.
A.
Venkateswara Rao
,
F.
Ozanam
, and
J.‐N.
Chazalviel
,
J. Electrochem. Soc.
138
,
153
(
1991
).
10.
J.‐N.
Chazalviel
,
Surf. Sci.
88
,
204
(
1979
).
11.
J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry (Plenum, New York, 1972), Vol. 2, Chap. 10, pp. 1231–1264.
12.
B.
Keita
and
L.
Nadjo
,
J. Electroanal. Chem.
199
,
229
(
1986
).
13.
V. A.
Burrows
,
Y. J.
Chabal
,
G. S.
Higashi
,
K.
Raghavachari
, and
S. B.
Christman
,
Appl. Phys. Lett.
53
,
998
(
1988
).
14.
We recall that in this electromodulated technique, the vibrational signal generally appears as a superimposition of the standard signal and its derivative, and the sign itself may change, depending upon the considered species and modulation mechanism (see, e.g., Ref. 8). Here the weak frequency dependence of the signals suggests in either case a Stark modulation mechanism. Yet the different nature of the two species may well explain a drastic change of signal shape.
15.
Y. J.
Chabal
,
Surf. Sci.
168
,
594
(
1986
).
16.
H.
Gerischer
,
Anales de Fisica y Quimica B
56
,
535
(
1960
).
17.
J. A.
Switzer
,
J. Electrochem. Soc.
136
,
1009
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.