The band gap of Ga0.5In0.5P is reported as a function of growth rate and growth temperature. The Ga0.5In0.5P is grown lattice matched to 2°‐off (100) GaAs substrates by atmospheric pressure organometallic chemical vapor deposition using an inlet group V/III ratio of 65. The variation of the band gap is surprisingly complex, taking five different functional forms within the two‐dimensional parameter space. These include regions in which the band gap (1) increases with growth rate, (2) decreases with growth rate, (3) is independent of both growth rate and temperature, (4) is independent of growth rate, but dependent on growth temperature, and (5) is not measurable since three‐dimensional, instead of two‐dimensional, growth is observed. The behavior can only be explained by a theory involving competing processes. One such theory is described.

1.
A.
Gomyo
,
T.
Suzuki
,
K.
Kobayashi
,
S.
Kawata
,
I.
Hino
, and
T.
Yuasa
,
Appl. Phys. Lett.
50
,
673
(
1987
);
A.
Gomyo
,
K.
Kobayashi
,
S.
Kawata
,
I.
Hino
,
T.
Suzuki
, and
T.
Yuasa
,
J. Cryst. Growth
77
,
367
(
1986
).
2.
T.
Suzuki
,
A.
Gomyo
,
S.
Iijima
,
K.
Kobayashi
,
S.
Kawata
,
I.
Hino
, and
T.
Yuasa
,
Jpn. J. Appl. Phys.
27
,
2098
(
1988
);
A.
Gomyo
,
T.
Suzuki
, and
S.
Iijima
,
Phys. Rev. Lett.
60
,
2645
(
1988
).
3.
M.
Kondow
,
H.
Kakibayashi
,
S.
Minagawa
,
Y.
Inoue
,
T.
Nishino
, and
Y.
Hamakawa
,
Appl. Phys. Lett.
53
,
2053
(
1988
).
4.
S.
Kurtz
,
J.
Olson
, and
A.
Kibbler
,
Solar Cells
24
,
307
(
1988
).
5.
J. Goral, M. Al‐Jassim, J. Olson, and A. Kibbler, in Epitaxy of Semiconductor Layered Structures, edited by R. T. Tung, L. R. Dawson, and R. L. Gunshor (Materials Research Society, Pittsburgh, PA, 1988), Mater. Res. Soc. Symp. Proc. Vol. 102, p. 583.
6.
S.
Kurtz
,
J.
Olson
,
J.
Goral
,
A.
Kibbler
, and
E.
Beck
,
J. Electron. Mater.
19
,
825
(
1990
).
7.
S.
Kurtz
,
J.
Olson
, and
A.
Kibbler
,
Appl. Phys. Lett.
54
,
718
(
1989
).
8.
H.
Okuda
,
C.
Anayama
,
S.
Narita
,
M.
Kondo
,
T.
Tanahashi
,
O.
Ueda
, and
K.
Nakajima
,
Appl. Phys. Lett.
55
,
690
(
1989
).
9.
B.
Bernard
,
L.
Ferreira
,
S.
Wei
, and
A.
Zunger
,
Phys. Rev. B
38
,
6338
(
1988
).
10.
P.
Gavrilovic
,
F.
Dabkowski
,
K.
Meehan
,
J.
Williams
,
W.
Stutius
,
K.
Hsieh
,
N.
Holonyak
,
M.
Shahid
, and
S.
Mahajan
,
J. Cryst. Growth
93
,
426
(
1989
).
11.
T.
Suzuki
,
A.
Gomyo
, and
S.
Iijima
,
J. Cryst. Growth
93
,
396
(
1988
);
P.
Bellon
,
J.
Chevalier
,
E.
Augarde
,
J.
Andre
, and
G.
Martin
,
J. Appl. Phys.
66
,
2388
(
1989
);
J.
Bernard
,
R.
Dandrea
,
L.
Ferreira
,
S.
Froyen
,
S.
Wei
, and
A.
Zunger
,
Appl. Phys. Lett.
56
,
731
(
1990
);
I.
Murgatroyd
,
A.
Norman
, and
G.
Booker
,
J. Appl. Phys.
67
,
2310
(
1990
).
12.
S. Kurtz and J. Olson, Proceedings of the 19th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1987), p. 823.
13.
S. Kurtz (unpublished).
14.
Y.
Kim
,
A.
Ourmazd
,
R.
Malik
, and
J.
Rentschler
,
Mater. Res. Soc. Symp. Proc.
159
,
351
(
1990
).
15.
R.
Cohen
,
J. Appl. Phys.
67
,
7268
(
1990
).
16.
D.
Cao
,
A.
Kimball
,
G.
Chen
,
K.
Fry
, and
G.
Stringfellow
,
J. Appl. Phys.
66
,
5384
(
1989
).
17.
For example,
S.
Nagata
and
T.
Tanaka
,
J. Appl. Phys.
48
,
940
(
1977
), report a gallium atom diffusion length on GaAs of 20 nm under As‐rich conditions, compared to 190 nm under Ga‐rich conditions.
18.
J.
Neave
,
P.
Dobson
,
B.
Joyce
, and
J.
Zhang
,
Appl. Phys. Lett.
47
,
100
(
1985
).
19.
Comparison of various diffusion data shows that for conditions with large point‐defect concentrations the diffusion is faster because of a smaller activation energy rather than because of a larger prefactor.
20.
U.
Voland
,
R.
Cerny
,
P.
Deus
,
D.
Bergner
, and
G.
Fenninger
,
Cryst. Res. Technol.
24
,
1177
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.