Either spontaneous or artificial ordering of semiconductor alloys into CuAu‐like, chalcopyrite, or CuPt‐like structures is predicted to be accompanied by a reduction in the direct band gaps relative to the average over the binaries. In this letter calculated results are presented for seven III‐V and II‐VI alloys. We identify the mechanism for this band‐gap narrowing as band folding followed by repulsion between the folded states. The latter is coupled by the non‐zinc‐blende component of the superlattice potential. The same physical mechanism (but to a different extent) is responsible for gap bowing in disordered alloys.

1.
G. P.
Srivastava
,
J. L.
Martins
, and
A.
Zunger
,
Phys. Rev. B
31
,
2561
(
1985
);
A.
Mbayc
,
L. G.
Ferreira
, and
A.
Zunger
,
Phys. Rev. Lett.
58
,
49
(
1987
).
2.
L. G.
Ferreira
,
S.‐H.
Wei
,
L. G.
Ferreira
, and
A.
Zunger
,
Phys. Rev. B
40
,
3197
(
1989
);
(to be published).
3.
(a)
T. S.
Kuan
,
W. I.
Wang
, and
E. L.
Wilkie
,
Appl. Phys. Lett.
51
,
51
(
1987
);
(b)
T.
Fukui
and
H.
Saito
,
Jpn. J. Appl. Phys.
23
,
L521
(
1984
).
4.
H. R.
Jen
,
M. J.
Cherng
, and
G. B.
Stringfellow
,
Appl. Phys. Lett.
48
,
1603
(
1986
).
5.
A.
Gomyo
,
T.
Suzuki
,
A.
Kobayashi
,
S.
Kawata
,
I.
Hino
, and
T.
Yuasa
,
Appl. Phys. Lett.
50
,
673
(
1987
).
6.
S. R.
Kurtz
,
J. M.
Olson
, and
A.
Kibbler
,
Solar Cells
24
,
307
(
1988
);
T.
Nishino
,
Y.
Inoue
, and
Y.
Hamakawa
,
Appl. Phys. Lett.
53
,
583
(
1988
).
7.
S.‐H.
Wei
and
K.
Krakauer
,
Phys. Rev. Lett.
55
,
1200
(
1985
).
8.
A. Zunger, S.‐H. Wei, L. G. Ferreira and J. E. Bernard (unpublished).
9.
For example, see
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
10.
'Landolt‐Börnstein New Series, edited by M. Schulz and H. Weiss (Springer, Berlin, 1982), Vol. 17a,b.
11.
J. J.
Hopfield
,
J. Phys. Chem. Solids
15
,
97
(
1960
).
12.
S.‐H.
Wei
and
A.
Zunger
,
Phys. Rev. B
37
,
8958
(
1988
).
13.
S.‐H.
Wei
and
A.
Zunger
,
Phys. Rev. B
39
,
3279
(
1989
);
S.‐H.
Wei
and
A.
Zunger
,
39
,
6279
(
1989
).,
Phys. Rev. B
14.
S.‐H.
Wei
and
A.
Zunger
,
Appl. Phys. Lett.
53
,
2077
(
1988
).
15.
D. M.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
34
,
5280
(
1986
), find δCA = 0.18 eV in AlGaAs2.
16.
B. J.
Min
,
S.
Massidda
, and
A. J.
Freeman
,
Phys. Rev. B
38
,
1970
(
1988
), find δCA = 0.18 eV in AlGaAs2.
17.
P.
Boguslawski
and
A.
Baldareschi
,
Solid State Commun.
70
,
1085
(
1989
), find δCA = 0.39 eV in InGaAs2.
18.
A.
Taguchi
and
T.
Ohno
,
Phys. Rev. B
36
,
1696
(
1987
), find δCA∼0 in InGaAs2.
19.
R. Magri, Phys. Rev. B (to be published) find δCP = 0.67 eV in InGaAs2.
20.
T.
Kurimoto
,
N.
Hamada
, and
A.
Oshiyama
,
Superlatt. Microst.
5
,
171
(
1989
), find δCP = 0.33 eV in GaInAs2.
21.
A.
Zunger
and
J.
Jaffe
,
Phys. Rev. Lett.
51
,
662
(
1983
).
22.
M.
Garriga
,
M.
Cardona
,
N. E.
Christensen
,
P.
Lauten‐Schlager
,
T.
Isu
, and
K.
Ploog
,
Phys. Rev. B
36
,
3254
(
1987
).
23.
M.
Cardona
,
T.
Suemoto
,
N. E.
Christensen
,
T.
Isu
, and
K.
Ploog
,
Phys. Rev. B
36
,
5906
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.