A photoelectrochemical anodization technique has been used to fabricate n‐Si/insulator/metal (MIS) diodes with improved electrical properties. MIS structures fabricated with Au have provided the first experimental observation of a solid‐state n‐Si surface barrier device whose open circuit voltage Voc is controlled by minority‐carrier bulk diffusion/recombination processes. For these diodes, variation of the minority‐carrier diffusion length and majority‐carrier dopant density produced changes in Voc that were in accord with bulk diffusion/recombination theory. Additionally, the variation in Voc in response to changes in the work function of the metal overlayer indicated that these MIS devices were not subject to the Fermi level pinning restrictions observed for n‐Si Schottky structures. X‐ray photoelectron spectroscopic characterization of the anodically grown insulator indicated 8.2±0.9 Å of a strained SiO2 layer as the interfacial insulator resulting from the photoanodization process.

1.
A.
Heller
,
Acc. Chem. Res.
14
,
154
(
1984
).
2.
(a)
K.
Rajeshwar
,
J. Appl. Electrochem.
15
,
1
(
1985
);
(b)
N. S.
Lewis
,
Ann. Rev. Mater. Sci.
14
,
95
(
1984
).
3.
(a) S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981);
(b)
J.
Ruzyllo
,
IEEE Electron Device Lett.
EDL‐1
,
197
(
1980
).
4.
(a)
M. A.
Green
,
A. W.
Blakers
,
J.
Shi
,
E. M.
Keller
, and
S. R.
Wenham
,
Appl. Phys. Lett.
44
,
1163
(
1984
);
(b)
A. W.
Blakers
,
A.
Wang
,
A. M.
Milene
,
J.
Zhao
, and
M. A.
Green
,
Appl. Phys. Lett.
55
,
1363
(
1989
).
5.
(a) S. J. Fonash, Solar Cell Device Physics (Academic, New York, 1985);
(b) R. R. King, R. A. Sinton, and R. M. Swanson, in Conference Record, 20th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1989), p. 538.
6.
(a)
D. R.
Lillington
and
W. G.
Townsend
,
Appl. Phys. Lett.
28
,
97
(
1976
):
(b)
J. P.
Ponpon
and
P.
Siffert
,
J. Appl. Phys.
47
,
3248
(
1976
);
(c) T. E. Sullivan, R. B. Childs, J. M. Ruths, and S. J. Fonash, in The Physics of SiO2 and its Interfaces, edited by S. T. Pantelides (Pergamon, New York, 1978), pp. 454–458;
(d)
K.
Yamamoto
,
M.
Moniwa
,
T.
Sawada
, and
H.
Hasegawa
,
Jpn. J. Appl. Phys.
87
,
20
(
1981
).
7.
(a)
J.
Shewchun
and
R. A.
Clarke
,
Solid State Electron.
16
,
213
(
1973
);
(b)
H. C.
Card
and
E. H.
Rhoderick
,
Solid‐State Electron.
16
,
365
(
1973
);
(c)
A. T.
Howe
and
T. H.
Fleisch
,
J. Electrochem. Soc.
134
,
72
(
1987
).
8.
(a)
M. L.
Rosenbluth
,
C. M.
Lieber
and
N. S.
Lewis
,
Appl. Phys. Lett.
45
,
423
(
1984
);
(b)
M. L.
Rosenbluth
and
N. S.
Lewis
,
J. Am. Chem. Soc.
108
,
4689
(
1986
);
(c)
M. C. A.
Fantini
,
W. M.
Shen
and
M.
Tomkiewicz
,
J. Appl. Phys.
65
,
4884
(
1989
).
9.
(a)
F. J.
Grunthaner
,
P. J.
Grunthaner
,
R. P.
Vasquez
,
B. F.
Lewis
, and
J.
Maserjian
,
J. Vac. Sci. Technol.
16
,
1443
(
1979
);
(b)
S. I.
Raider
and
R.
Flitsch
,
IBM J. Res. Develop.
22
,
294
(
1978
);
(c)
A.
Ishizaka
and
S.
Iwata
,
Appl. Phys. Lett.
36
,
71
(
1980
);
(d)
J.
Finster
and
D.
Schulze
,
Phys. Status Solidi
68
,
505
(
1981
).
10.
G.
Hodes
,
Appl. Phys. Lett.
54
,
2085
(
1989
).
11.
S. D.
Offsey
,
J. M.
Woodall
,
A. C.
Warren
,
P. D.
Kirchner
,
T. I.
Chappell
, and
G. D.
Pettit
,
Appl. Phys. Lett.
48
,
475
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.