We have used a combination of pulsed molecular beam and time‐resolved mass spectrometry to study the kinetics of the pyrolysis of trimethylgallium on GaAs(100) surfaces. We found that CH3 is the major reaction product. Two CH3 desorption channels were observed, with activation energies 37.9±1.6 and 45.0±1.4 kcal/mole. An arsine ambient significantly accelerates the CH3 desorption, but no CH4 was observed. A model for the reaction of trimethylgallium on the GaAs(100) surface is proposed.

1.
D. H.
Reep
and
S. K.
Ghandi
,
J. Electrochem. Soc.
130
,
675
(
1983
).
2.
J.
Nishizawa
,
T.
Kurabayashi
,
H.
Abe
, and
N.
Sakurai
,
J. Electrochem. Soc.
134
,
945
(
1987
).
3.
T. H.
Chiu
,
Appl. Phys. Lett.
55
,
1244
(
1989
).
4.
J.
Nishizawa
and
T.
Kurabayashi
,
J. Cryst. Growth
93
,
98
(
1988
).
5.
D. W.
Squire
,
C. S.
Dulcey
, and
M. C.
Liu
,
Laser Inst. Am. Proc. ICALEO
49–51
,
148
(
1985
).
6.
J. R. Creighton, 36th National Symposium of the American Vacuum Society, Boston, Oct. 23–27, 1989.
7.
B. N.
Eldridge
and
M. L.
Yu
,
Rev. Sci. Instrum.
58
,
1014
(
1987
).
8.
S. L.
Wright
,
R. F.
Marks
, and
A. E.
Goldberg
,
J. Vac. Sci. Technol. B
6
,
842
(
1988
). Our viewport showed negligible transmission loss.
9.
A. J.
van Bommel
,
J. E.
Crombeen
, and
T. G. J.
van Oirschot
,
Surf. Sci.
72
,
95
(
1978
).
10.
The values of k1 in Fig. 2 at temperatures above 500 °C are affected by the pulse width. Hence they are not used in the Arrhenius plot.
11.
M. G.
Jacko
and
S. J. W.
Price
,
Can. J. Chem.
41
,
1560
(
1963
).
12.
M. L.
Yu
,
U.
Memmert
, and
T. F.
Kuech
,
Appl. Phys. Lett.
55
,
1011
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.