Using time‐resolved photoluminescence, we have examined the optoelectronic properties of Ga0.5In0.5P/GaAs/Ga0.5In0.5P double heterostructures grown by organometallic chemical vapor deposition. For comparison, similar structures using Al0.4Ga0.6As/GaAs and Al0.5In0.5P/GaAs lattice‐matched heterointerfaces were also examined. For the Ga0.5In0.5P/GaAs heterostructure, we show that the recombination velocity at a Ga0.5In0.5P/GaAs interface can be less than 1.5 cm/s. As a result, photoluminescence decay times as long as 14 μs have been observed in undoped GaAs double heterostructures. This photoluminescence decay time varies with temperature as T1.59, characteristic of radiative recombination not limited by surface or bulk nonradiative recombination processes. For the Al0.4Ga0.6As/GaAs and Al0.5In0.5P/GaAs heterostructures examined in this study, the upper limits of the interface recombination velocity were 210 and 900 cm/s, respectively.

1.
E.
Yablonovitch
,
C. J.
Sandroff
,
R.
Bhat
, and
T.
Gmitter
,
Appl. Phys. Lett.
51
,
439
(
1987
).
2.
D.
Liu
,
T.
Zhang
,
R. A.
LaRue
,
J. S.
Harris
, Jr.
, and
T. W.
Sigmon
,
Appl. Phys. Lett.
53
,
1059
(
1988
).
3.
B. A.
Parkinson
,
A.
Heller
, and
B.
Miller
,
Appl. Phys. Lett.
33
,
521
(
1978
).
4.
R. J.
Nelson
,
J. S.
Williams
,
H. J.
Leamy
,
B.
Miller
,
H. C.
Casey
, Jr.
,
B. A.
Parkinson
, and
A.
Heller
,
Appl. Phys. Lett.
36
,
76
(
1981
).
5.
T. J.
Gmitter
,
E.
Yablonovitch
, and
A.
Heller
,
J. Electrochem. Soc.
135
,
2391
(
1988
).
6.
S. K.
Ghandhi
,
S.
Tyagi
, and
R.
Venkatasubramanian
,
Appl. Phys. Lett.
53
,
1308
(
1988
).
7.
E.
Yablonovitch
,
R.
Bhat
,
J. P.
Harbison
, and
R. A.
Logan
,
Appl. Phys. Lett.
50
,
1197
(
1987
).
8.
L. W.
Molenkamp
and
H. F. J.
van’t Blik
,
J. Appl. Phys.
64
,
4253
(
1988
).
9.
G. H.
Olsen
,
M.
Ettenberg
, and
R. V.
D’Aieilo
,
Appl. Phys. Lett.
33
,
606
(
1978
).
10.
J. H.
Harris
,
S.
Sugai
, and
A. V.
Nurmikko
,
Appl. Phys. Lett.
40
,
885
(
1982
).
11.
M. J.
Mondry
and
H.
Kroemer
,
IEEE Electron Devices
EDL‐6
,
175
(
1985
).
12.
J. M. Olson, S. R. Kurtz, and A. E. Kibbler, Proceedings of the 20th IEEE Photovoltaics Specialists Conference (IEEE, New York, 1988), pp. 777–780.
13.
K.
Kohayashi
,
S.
Kawata
,
A.
Gomyo
,
I.
Hino
, and
T.
Suzuki
,
Electron. Lett.
21
,
931
(
1985
).
14.
R. K.
Ahrenkiel
,
D. J.
Dunlavy
, and
T.
Hanak
,
Solar Cells
24
,
339
(
1988
).
15.
G. W.
’t Hooft
and
C.
van Opdorp
,
J. Appl. Phys.
69
,
1065
(
1986
).
16.
H. C.
Casey
, Jr.
and
Frank
Stern
,
J. Appl. Phys.
47
,
631
(
1976
).
17.
J. M. Olson, S. R. Kurtz, and A. E. Kibbler (unpublished data).
18.
J. M.
Olson
,
S. R.
Kurtz
, and
A. E.
Kibbler
,
J. Cryst. Growth
89
,
131
(
1988
).
19.
R. K. Ahrenkiel, “Minority Carrier Lifetimes in Compound Semiconductors,” Memorias VIII Congreso National de Fisica de Superficies E Interfaces (Sociedad Mexicana de Ciencia de Superficiesy Vacio, Mexico City, 1988), pp. 1–8.
20.
R. K.
Ahrenkiel
and
D. J.
Dunlavy
,
J. Vac. Sci. Technol. A
7
,
822
(
1989
).
21.
R. K. Ahrenkiel, D. J. Dunlavy, and M. L. Timmons, Proceedings of the 20th IEEE Photovoltaics Specialists Conference (IEEE, New York, 1988), pp. 611–615.
This content is only available via PDF.
You do not currently have access to this content.