Successful growth of (100)ErAs single‐crystal films on (100)GaAs has been demonstrated. Reflection high‐energy electron diffraction, low‐energy electron diffraction (LEED), and Rutherford backscattering with channeling indicate single‐crystal growth. LEED from the ErAs shows a (1×1) structure. Overgrowth of GaAs on ErAs is found to be difficult due to the GaAs not wetting the ErAs surface and hence resulting in island growth. For a 150‐Å‐thick film metallic behavior is observed with resistivities 17 and 70 μΩ cm at 1.5 K and room temperature, respectively. Low‐temperature Hall measurements show the conduction to be dominated by electrons with an effective n‐type mobility in the range 360 cm2/V s at 1.35 K.

1.
N.
Tabatabaie
,
T.
Sands
,
J. P.
Harbison
,
H. L.
Gilchrist
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
53
,
2528
(
1988
).
2.
A. Y.
Cho
and
P. D.
Dernier
,
J. Appl. Phys.
49
,
3328
(
1978
).
3.
J.
Massies
,
P.
Delescluse
,
P.
Etienne
, and
N. T.
Linh
,
Thin Solid Films
90
,
113
(
1980
).
4.
J. R.
Waldrop
and
R. W.
Grant
,
Appl. Phys. Lett.
34
,
630
(
1979
);
G. A.
Prinz
and
J. J.
Krebs
,
Appl. Phys. Lett.
39
,
397
(
1981
).
5.
G. A.
Prinz
,
Phys. Rev. Lett.
54
,
1051
(
1985
).
6.
C. J.
Palmstro/m
,
C. C.
Chang
,
A.
Yu
,
G. J.
Galvin
, and
J. W.
Mayer
,
J. Appl. Phys.
62
,
3755
(
1987
).
7.
C. J. Palmstro/m, K. Garrison, B.‐O. Fimland, J. P. Harbison, T. Sands, E. W. Chase, and L. Florez, paper presented at the Electronics Materials Conference, Boulder, Colorado, June 22–24, 1988.
8.
T.
Sands
,
J. P.
Harbison
,
W. K.
Chan
,
S. A.
Schwarz
,
C. C.
Chang
,
C. J.
Palmstro/m
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
52
,
1216
(
1988
).
9.
A.
Guivarc’h
,
R.
Guérin
, and
M.
Secoué
,
Electron. Lett.
23
,
1004
(
1987
).
10.
T.
Sands
,
V. G.
Keramidas
,
K. M.
Yu
,
J.
Washburn
, and
K.
Krishnan
,
J. Appl. Phys.
62
,
2070
(
1987
).
11.
In addition to the rare‐earth arsenides Rh2As is also expected to result in epitaxial films. However, attempts by Guivarc’h et al. to grow this compound on GaAs have been unsuccessful [
A.
Guivarc’h
,
M.
Secoué
,
B.
Guenais
,
Y.
Ballini
,
P. A.
Badoz
, and
E.
Rosencher
,
J. Appl. Phys.
64
,
683
(
1988
)].
12.
P. Villars and L. D. Calvert, in Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).
13.
R.
Hanks
and
M. M.
Faktor
,
Trans. Faraday Soc.
63
,
1130
(
1967
).
14.
See W. G. Moffatt, The Handbook of Binary Phase Diagrams (Genium, Schenectady, NY, 1984);
F. A. Shunk, Constitution of Binary Alloys, 2nd Suppl. (McGraw‐Hill, New York, 1969);
R. P. Elliott, Constitution of Binary Alloys, 1st Suppl. (McGraw‐Hill, New York, 1965);
M. Hansen, Constitution of Binary Alloys (McGraw‐Hill, New York, 1958).
15.
L. H.
Brixner
,
J. Inorg. Nuclear Chem.
16
,
199
(
1960
).
16.
S. E. R.
Hiscocks
and
J. B.
Mullin
,
J. Mater. Sci.
4
,
962
(
1969
).
17.
H. J.
Richter
,
R. S.
Smith
,
N.
Herres
,
M.
Seelmann‐Eggebert
, and
P.
Wennekers
,
Appl. Phys. Lett.
53
,
99
(
1988
).
18.
N.
Sclar
,
J. Appl. Phys.
33
,
2999
(
1962
).
19.
L. Ley and M. Cardona, eds., Photoemmission in Solids 11, Topics in Applied Physics (Springer, New York, 1979), Vol. 27, p. 373.
20.
S. J. Allen, N. Tabatabaie, C. J. Palmstro/m, and G. W. Hull (unpublished).
This content is only available via PDF.
You do not currently have access to this content.