We report the first growth of epitaxial NiAl metallic layers buried within monocrystalline GaAs/AlAs/NiAl/AlAs/GaAs heterostructures deposited entirely within a molecular beam epitaxy growth chamber. The layer growth sequence is monitored by reflection high‐energy electron diffraction. Cross‐sectional transmission electron microscopy shows that the metal layers and the III‐V overgrowth are monocrystalline and of high quality. Thin, buried NiAl layers over the entire thickness range investigated (3–100 nm) are electrically continuous (69 μΩ cm at 3 nm). The heterostructures formed by this process can be used for the fabrication of thin‐metal buried‐layer devices utilizing ballistic transport or quantum mechanical tunneling across thin metal bases.

1.
R.
Ludeke
,
L. L.
Chang
, and
L.
Esaki
,
Appl. Phys. Lett.
23
,
201
(
1973
);
A. Y.
Cho
and
P. D.
Dernier
,
J. Appl. Phys.
49
,
3328
(
1978
);
G. A.
Prinz
and
J. J.
Krebs
,
Appl. Phys. Lett.
39
,
397
(
1981
);
J.
Massies
,
P.
Delescluse
,
P.
Etienne
, and
N.
Linh
,
Thin Solid Films
90
,
113
(
1982
);
R.
Ludeke
,
T.‐C.
Chiang
, and
D. E.
Eastman
,
J. Vac. Sci. Technol.
21
,
599
(
1982
).
2.
T.
Sands
,
V. G.
Keramidas
,
K. M.
Yu
,
J.
Washburn
, and
K. M.
Krishnan
,
J. Appl. Phys.
62
,
2070
(
1987
).
3.
A.
Lahav
,
M.
Eizenberg
, and
Y.
Komem
,
J. Appl. Phys.
60
,
991
(
1986
).
4.
A.
Guivarc’h
,
R.
Guerin
, and
M.
Secoue
,
Electron. Lett.
23
,
1004
(
1987
).
5.
H.
Jacobi
,
B.
Vassos
, and
H.‐J.
Engell
,
J. Phys. Chem. Solids
30
,
1261
(
1969
).
6.
T.
Sands
,
Appl. Phys. Lett.
52
,
197
(
1988
).
7.
T.
Sands
,
W. K.
Chan
,
C. C.
Chang
,
E. W.
Chase
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
52
,
1338
(
1988
).
8.
T.
Sands
,
J. P.
Harbison
,
W. K.
Chan
,
S. A.
Schwarz
,
C. C.
Chang
,
C. J.
Palmstro/m
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
52
,
1216
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.