The number of deep defects (as measured by sub‐band‐gap optical absorption) and the number of recombination centers (as measured by steady‐state photoconductivity) in high quality undoped hydrogenated amorphous silicon are monitored as the film undergoes light‐induced defect generation and thermal annealing (the Staebler–Wronski effect). The kinetics of the growth in the density of deep defects agree well with the kinetics of spin centers reported by Stutzmann, Jackson, and Tsai. [Appl. Phys. Lett. 45, 1075 (1984)]. The density of recombination centers is directly related, though not simply proportional to, the density of deep defects; as samples are annealed, the recombination center density drops much more quickly than the total defect density. This behavior is shown to arise if the distribution of defect energy levels corresponds to a distribution of defect annealing energies.

1.
D. L.
Staebler
and
C. R.
Wronski
,
Appl. Phys. Lett.
33
,
292
(
1977
).
2.
M.
Stutzmann
,
W. B.
Jackson
, and
C. C.
Tsai
,
Appl. Phys. Lett.
45
,
1075
(
1984
).
3.
M.
Stutzmann
,
W. B.
Jackson
, and
C. C.
Tsai
,
Phys. Rev. B
32
,
23
(
1985
).
4.
C. R. Wronski, Z. E. Smith, S. Aljishi, V. Chu, K. Shepard, D.‐S. Shen, R. Scbwarz, D. Slobodin, and S. Wagner, in AIP Conference Proceedings 157, edited by B. L. Stafford and E. Sabisky (American Institute of Physics, New York, 1987), p. 70;
Y. Ichikawa, O. Nabeta, K. Maruyama, T. Ihara, T. Yoshida, H. Sakai, and Y. Uchida, ibid., p. 318. Measurement of the defect density by the space‐charge limited‐current technique yield similar kinetics, e.g., C. Wagner, S. Gangopadhyay, B. Schroder, and J. Geiger, ibid., p. 46;
and
F.
Schauer
and
J.
Kocka
,
Philos. Mag. B
52
,
L25
(
1985
).
C. Lee, W. D. Ohlscn, and P. C. Taylor [in Materials Research Society Symposium Proceedings, edited by D. Adfer, Y. Hamakawa, and A. Madan (Materials Research Society, Pitssburgh, 1986), Vol. 70, p. 225.] observe t1/3 kinetics in some samples but not others.
5.
U.
Vogct‐Grote
,
W.
Kummerle
,
R.
Fisher
, and
J.
Stuke
,
Philos. Mag. B
41
,
127
(
1980
).
6.
H.
Dersch
,
L.
Schweitzer
, and
J.
Stuke
,
Phys. Rev. B
28
,
4678
(
1983
).
7.
S.
Guha
and
M.
Hack
,
J. Appl. Phys.
58
,
1683
(
1985
).
8.
D. Slobodin, S. Aljishi, R. Schwarz, and S. Wagner, in Materials Research Society Symposium Proceedings, edited by D. Adler, A. Madan, and M. J. Thompson (Materials Research Society, Pittsburgh, 1985), Vol. 49, p. 153.
9.
M.
Vanecek
,
J.
Kocka
,
J.
Stuchlik
,
Z.
Kozisek
,
O.
Stika
, and
A.
Triska
,
Sol. Energy Mater.
8
,
411
(
1983
).
10.
Z. E.
Smith
,
V.
Chu
,
K.
Shepard
,
S.
Aljishi
,
D.
Slobodin
,
J.
Kolodzey
,
S.
Wagner
, and
T. L.
Chu
,
Appl. Phys. Lett.
50
,
1521
(
1987
).
11.
X.
Xa
,
A.
Morimoto
,
M.
Kumeda
, and
T.
Shimizu
,
Jpn. J. Appl. Phys.
26
,
L1818
(
1987
).
12.
Z. E. Smith and S. Wagner, in Material Research Society Symposium Proceedings, edited by A. Madan, M. Thompson, D. Adler, and Y. Hamakawa (Materials Research Society, Pittsburgh, 1987), Vol. 95, p. 551.
13.
A. Rose, Concepts in Photoconductivity and Allied Problems (Krieger, Huntington, New York, 1978), pp. 24–33.
14.
S.
Aljishi
,
V.
Chu
,
A. E.
Smith
,
D.‐S.
Shen
,
J. P.
Conde
,
D.
Slobodin
,
J.
Kofodzey
, and
S.
Wagner
,
J. Non‐Cryst. Solids
91&98
,
1023
(
1987
).
Earlier work on the Rose model and the Staebler‐Wronski effect includes
S.
Guha
,
C.‐Y.
Kuang
, and
S. J.
Hudgens
,
Phys. Rev. B
29
,
5995
(
1984
).
15.
Z. E.
Smith
and
S.
Wagner
,
Phys. Rev. B
32
,
5510
(
1985
);
T. J.
McMahon
and
R.
Tsu
,
Appl. Phys. Lett.
51
,
412
(
1987
);
X.
Xu
,
A.
Morimoto
,
M.
Kumeda
, and
T.
Shimizu
,
Appl. Phys. Lett.
52
,
622
(
1988
).
16.
E.
Eser
,
J. Appl. Phys.
59
,
3508
(
1986
).
17.
S. T.
Pantelides
,
Phys. Rev. B
36
,
3479
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.