We derive stability criteria for arbitrary strained heterostructures. The criteria are based on evaluating the excess stress as a continuous function of position within a structure for the two well‐known Matthews–Blakeslee [J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974)] dislocation mechanisms for strain relief by plastic flow. If the excess stress for either mechanism exceeds zero anywhere within the structure, then the structure is unstable or metastable to strain relief by that mechanism.
REFERENCES
1.
G. C.
Osbourn
, P. L.
Gourley
, I. J.
Fritz
, R. M.
Biefeld
, L. R.
Dawson
, and T. E.
Zipperian
, Semicond. Semimet.
24
, 445
(1987
).2.
P. S. Pcercy, B. W. Dodson, J. Y. Tsao, E. D. Jones, D. R. Myers, T. E. Zipperian, L. R. Dawson, R. M. Biefeld, J. F. Klem, and C. R. Hills (unpublished).
3.
J. Y.
Tsao
, B. W.
Dodson
, S. T.
Picraux
, and D. M.
Cornelison
, Phys. Rev. Lett.
59
, 2455
(1987
).4.
5.
6.
where is the stress tensor.
7.
J. P. Hirth and J. Lothe, Theory of Dislocations. 2nd ed. (Wiley‐Interscience, New York, 1982), Eq. 3–87.
8.
The exact numerical factors are obtained by considering the glide component of the Peach‐Kohler relation, as outlined above.
9.
R.
Hull
, J. C.
Bean
, F.
Cerdeira
, A. T.
Fiory
, and J. M.
Gibson
, Appl. Phys. Lett.
48
, 56
(1986
).10.
G. W.
Wang
, Y. K.
Chen
, D. C.
Radulescu
, and L. F.
Eastman
, IEEE Electron Device Lett.
EDL‐9
, 4
(1988
). From the surface down, this structure is composed essentially of 400 Å of GaAs, 330 Å of 175 Å of 80 Å of 175 Å of 150 Å of and 1000 Å of GaAs buffer. 11.
12.
W. A.
Jesser
and J. H.
van der Merwe
, J. Appl. Phys.
63
, 1928
(1988
).13.
See, e.g.,
J. P.
Hirth
and A. G.
Evans
, J. Appl. Phys.
60
, 2372
(1986
).
This content is only available via PDF.
© 1988 American Institute of Physics.
1988
American Institute of Physics
You do not currently have access to this content.