Cracks in the surfaces of metal shafts rotating up to 3200 rpm were detected by passive, radiometric sensing of the 8–12‐μm thermal radiation emitted. This detection is possible because the effective crack emissivity approaches that of a black body, while the metal itself has a much lower emissivity. By the use of signal storage and signal subtraction, the technique is expected to permit ‘‘on‐line’’ monitoring of the development of cracks, even in the presence of surface blemishes.

1.
D. R. Maley and G. J. Posakony, Proceedings of the Fourth Annual Symposium on Nondestructive Testing of Aircraft and Missile Components, San Antonio, Texas 1963, p. 11.
2.
D. R. Green, Proceedings of the Fourth Annual Symposium on Nondestructive Testing of Aircraft and Missile Components, San Antonio, Texas 1963, p. 79.
3.
A.
Rosencwaig
and
G.
Busse
,
Appl. Phys. Lett.
36
,
725
(
1980
).
4.
J. C.
Murphy
and
L. C.
Aamodt
,
Appl. Phys. Lett.
38
,
196
(
1981
).
5.
J.
Saniie
,
M.
Luukkala
,
A.
Lehto
, and
R.
Rajala
,
Electron. Lett.
18
,
651
(
1982
).
6.
H.
Ermet
,
F. H.
Dacol
,
R. L.
Melcher
, and
T.
Baumann
,
Appl. Phys. Lett.
44
,
1136
(
1984
).
7.
Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, Metallic Elements and Alloys (IFI Plenum, New York and Washington, 1970), Vol. 7, pp. 12–14.
8.
M. Czerny and A. Walthar, Tables of the Fractional Functions for the Planck Radiation Law (Springer, Berlin, 1961).
9.
RCA, Electro‐Optics Handbook (RCA, Solid State Division, Electro Optics and Devices, Lancaster, PA, 1974), p. 151.
This content is only available via PDF.
You do not currently have access to this content.