The complex dynamical resistivity of high‐quality transparent and heat‐reflecting indium tin oxide films, prepared by reactive e‐beam deposition, was evaluated from spectrophotometric measurements in the 0.25–50‐μm wavelength range. These data are explained in detail from a theory encompassing scattering of free electrons by ionized impurities.

1.
Z. M.
Jarzebski
,
Phys. Status Solidi A
71
,
13
(
1982
).
2.
K. L.
Chopra
,
S.
Major
, and
D. K.
Pandya
,
Thin Solid Films
102
,
1
(
1983
).
3.
C. M.
Lampert
,
Solar Energy Mater.
6
,
1
(
1981
).
4.
C. G.
Granqvist
,
Appl. Opt.
20
,
2606
(
1981
);
C. G.
Granqvist
,
Proc. SPIE
401
,
330
(
1983
).
5.
J. S. E. M. Svensson and C. G. Granqvist (unpublished).
6.
I.
Hamberg
,
A.
Hjortsberg
, and
C. G.
Granqvist
,
Appl. Phys. Lett.
40
,
362
(
1982
);
I.
Hamberg
,
A.
Hjortsberg
, and
C. G.
Granqvist
,
Proc. SPIE
324
,
31
(
1982
).
7.
I.
Hamberg
and
C. G.
Granqvist
,
Appl. Opt.
22
,
609
(
1983
).
8.
E.
Gerlach
and
P.
Grosse
,
Festkörperprobleme
17
,
157
(
1977
).
9.
Our grain size is somewhat larger than in earlier work on evaporated 1TO films;
cf.
P.
Nath
,
R. F.
Bunshah
,
B. M.
Basol
, and
O. M.
Staffsud
,
Thin Solid Films
72
,
463
(
1980
).
10.
Data for In2O3 are given on ASTM Card No. 6‐0416.
11.
We used a Beckman ACTA MVII instrument in the 0.25‐2.5‐μm range and a Perkin‐Elmer 580B instrument at 2.5‐50‐,μm. Both spectrophotometers were interfaced to a computer.
12.
Results for CaF2 were obtained from the Harshaw Chemical Company; results for Si were taken from
C. D.
Salzberg
and
J. J.
Villa
,
J. Opt. Soc. Am.
47
,
244
(
1957
).
13.
M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
14.
The band edge displays an Urbach tail which may be related to the presence of ionized impurities; cf. N. F. Mott and E. A. Davis, Electronic Processes in Non‐Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p. 273.
15.
I.
Hamberg
and
C. G.
Granqvist
,
Thin Solid Films
105
,
L83
(
1983
).
16.
J. C. C.
Fan
and
F. J.
Bachner
,
J. Electrochem. Soc.
122
,
1719
(
1975
);
Appl. Opt.
15
,
1012
(
1976
).
17.
Y.
Ohhata
and
S.
Yoshida
,
Oyo Butsuri
46
,
43
(
1977
);
S.
Yoshida
,
Appl. Opt.
17
,
145
(
1978
).
18.
The Gerlach‐Grosse (GG) theory rests on the equivalence of energy loss and Joule heat. It is easier to apply than theories employing solutions of the Boltzmann transport equation [
D.
Chattopadhyay
and
H. J.
Queisser
,
Rev. Mod. Phys.
53
,
745
(
1981
)].
The GG formalism has been used recently to discuss the optical properties of ITO and doped SnO2 in the visible and near‐infrared [
H.
Köstlin
,
Festkörperprobleme
22
,
229
(
1982
);
G.
Frank
,
E.
Kauer
,
H.
Kostlin
, and
F. J.
Schmitte
,
Solar Energy Mater.
8
,
387
(
1983
)].
19.
M. G.
Calkin
and
P. J.
Nicholson
,
Rev. Mod. Phys.
39
,
361
(
1967
).
20.
J.
Lindhard
,
Kgl.
Danske Videnskab. Selskab
,
Mat.‐Fys. Medd.
28
, No.
8
(
1954
).
21.
The mean free path corresponding to the dc resistivity is ∼5nm. This is an order of magnitude smaller than the grain size of the ITO films; cf. Fig. 1.
This content is only available via PDF.
You do not currently have access to this content.