GaAs‐AlxGa1−xAs superlattice structures in which electron mobilities exceed those of otherwise equivalent epitaxial GaAs as well as the Brooks‐Herring predictions near room temperature and at very low temperatures are reported. This new behavior is achieved via a modulation‐doping technique that spatially separates conduction electrons and their parent donor impurity atoms, thereby reducing the influence of ionized and neutral impurity scattering on the electron motion.

1.
R. Dingle, Festkörperprobleme XV (Advances in Solid State Physics) (Pergamon‐Vieweg, Brainschwieg, 1975), p. 21;
R.
Dingle
,
A. C.
Gossard
, and
W.
Wiegmann
,
Phys. Rev. Lett.
34
,
1327
(
1975
).
2.
L.
Esaki
and
L. L.
Chang
,
Thin Solid Films
36
,
285
(
1976
).
3.
G. H.
Döhler
,
Phys. Status Solidi B
52
,
79
(
1972
);
G. H.
Döhler
,
52
,
533
(
1972
).
4.
L. Esaki, R. Ludeke, and R. Tsu, United States Patent number 3,626,257.
5.
G. H. Döhler, Proceedings of MBE‐78 (Paris, 1978) (unpublished).
6.
A. Y. Cho and J. R. Arthur, Jr., Progress in Solid State Chemistry, edited by G. Somerjai and J. McCaldin (Pergamon, New York, 1975), Vol. 10, p. 157.
7.
H.
Sakaki
,
L. L.
Chang
,
R.
Ludeke
,
C.‐A.
Chang
,
G. A.
Sai‐Halasz
, and
L.
Esaki
,
Appl. Phys. Lett.
31
,
211
(
1977
).
8.
E.
Kasper
,
H. J.
Herzog
, and
H.
Kibbel
,
Appl. Phys.
8
,
199
(
1975
).
9.
A. C.
Gossard
,
P. M.
Petroff
,
W.
Wiegmann
,
R.
Dingle
, and
A.
Savage
,
Appl. Phys. Lett.
29
,
323
(
1976
).
10.
L.
Esaki
and
L. L.
Chang
,
Phys. Rev. Lett.
33
,
495
(
1974
).
11.
L. L.
Chang
,
H.
Sakaki
,
C.‐A.
Chang
, and
L.
Esaki
,
Phys. Rev. Lett.
38
,
1489
(
1977
).
12.
R. Dingle and H. L. Störmer (unpublished).
13.
D. Rode, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1975), Vol. 10, p. 1.
14.
D. V. Lang, M. Jaros, and R. A. Logan (unpublished).
15.
Hall data from a bulk Si‐doped Al0.26Ga0.74As layer indicates a deep level at ED̃60meV as well as what appears to be a temperature‐independent electron concentration of ̃1.5×1016cm−3 at low temperatures.
16.
Mobilities in MBE‐grown ALxGa1−xAs are low. In particular, the sample mentioned in Ref. 15 has a maximum mobility of μ≃800cm2V−1sec−1 at room temperature which falls to μ≃10cm2V−1sec−1 at 4.2 K. In the superlattices, any carriers remaining in the AlxGa1−xAs layer will make an insignificant contribution to the conductivity, especially at low temperatures.
17.
H. Brooks, Advances in Electronics and Electron Physics (Academic, New York, 1955), Vol. 7, p. 85.
18.
G. E.
Stillman
and
C. M.
Wolfe
,
Thin Solid Films
31
,
69
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.