Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in the laser performance have been bottlenecked by the limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers with an AlGaAs nanomembrane transfer-printed onto an epitaxially grown GeSn substrate, interfaced by an ultrathin Al2O3 layer. The uniform formation of this nanometer-thin ALD-Al2O3 interlayer and structural integrity of the grafted heterojunction are confirmed in STEM. The grafted AlGaAs/GeSn DHS lasers show a lasing threshold of 11.06 mW at 77 K and a maximum lasing temperature of 130 K. These results highlight the potential of the grafting technique for enhancing charge carrier and optical field confinements, paving the way for room-temperature electrically injected GeSn lasers.

1.
R.
Soref
, “
The past, present, and future of silicon photonics
,”
IEEE J. Sel. Top. Quantum Electron.
12
(
6
),
1678
1687
(
2006
).
2.
D.
Liang
and
J. E.
Bowers
, “
Recent progress in lasers on silicon
,”
Nat. Photonics
4
(
8
),
511
517
(
2010
).
3.
G.
Roelkens
,
L.
Liu
,
D.
Liang
,
R.
Jones
,
A.
Fang
,
B.
Koch
, and
J.
Bowers
, “
III-V/silicon photonics for on-chip and intra-chip optical interconnects
,”
Laser Photonics Rev.
4
(
6
),
751
779
(
2010
).
4.
Y.
Kang
,
H.-D.
Liu
,
M.
Morse
,
M. J.
Paniccia
,
M.
Zadka
,
S.
Litski
,
G.
Sarid
,
A.
Pauchard
,
Y.-H.
Kuo
,
H.-W.
Chen
,
W. S.
Zaoui
,
J. E.
Bowers
,
A.
Beling
,
D. C.
McIntosh
,
X.
Zheng
, and
J. C.
Campbell
, “
Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product
,”
Nat. Photonics
3
(
1
),
59
63
(
2009
).
5.
W.
Du
,
S.
Al-Kabi
,
S.
Ghetmiri
,
H.
Tran
,
T.
Pham
,
B.
Alharthi
,
A.
Mosleh
,
J.
Margetis
,
J.
Tolle
,
H. A.
Naseem
,
M.
Mortazavi
,
G.
Sun
,
R.
Soref
,
B.
Li
, and
S.-Q.
Yu
, “
(Invited) Development of SiGeSn technique towards mid-infrared devices in silicon photonics
,”
ECS Trans.
75
(
8
),
231
(
2016
).
6.
S.
Zaima
,
O.
Nakatsuka
,
Y.
Shimura
,
M.
Adachi
,
M.
Nakamura
,
S.
Takeuchi
,
B.
Vincent
,
F.
Gencarelli
,
T.
Clarysse
,
J.
Demeulemeester
,
K.
Temst
,
A.
Vantomme
,
M.
Caymax
, and
R.
Loo
, “
(Invited) GeSn technology: impact of Sn on Ge CMOS applications
,”
ECS Trans.
41
(
7
),
231
(
2011
).
7.
S.
Xu
,
K.
Han
,
Y.-C.
Huang
,
K. H.
Lee
,
Y.
Kang
,
S.
Masudy-Panah
,
Y.
Wu
,
D.
Lei
,
Y.
Zhao
,
H.
Wang
,
C. S.
Tan
,
X.
Gong
, and
Y.-C.
Yeo
, “
Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 μm band
,”
Opt. Express
27
(
19
),
26924
26939
(
2019
).
8.
J.
Mathews
,
Z.
Li
,
Y.
Zhao
,
J.
Gallagher
,
I.
Agha
,
J.
Menendez
, and
J.
Kouvetakis
, “
(Invited) Toward GeSn Lasers: Light amplification and stimulated emission in GeSn waveguides at room temperature
,”
ECS Trans.
75
(
8
),
163
(
2016
).
9.
Y.
Zhou
,
Y.
Miao
,
S.
Ojo
,
H.
Tran
,
G.
Abernathy
,
J. M.
Grant
,
S.
Amoah
,
G.
Salamo
,
W.
Du
,
J.
Liu
,
J.
Margetis
,
J.
Tolle
,
Y.
Zhang
,
G.
Sun
,
R. A.
Soref
,
B.
Li
, and
S.-Q.
Yu
, “
Electrically injected GeSn lasers on Si operating up to 100 K
,”
Optica
7
(
8
),
924
928
(
2020
).
10.
Y.
Zhou
,
S.
Ojo
,
C.-W.
Wu
,
Y.
Miao
,
H.
Tran
,
J. M.
Grant
,
G.
Abernathy
,
S.
Amoah
,
J.
Bass
,
G.
Salamo
,
W.
Du
,
G.-E.
Chang
,
J.
Liu
,
J.
Margetis
,
J.
Tolle
,
Y.-H.
Zhang
,
G.
Sun
,
R. A.
Soref
,
B.
Li
, and
S.-Q.
Yu
, “
Electrically injected GeSn lasers with peak wavelength up to 2.7 μm
,”
Photonics Res.
10
(
1
),
222
229
(
2022
).
11.
J.
Margetis
,
S.
Al-Kabi
,
W.
Du
,
W.
Dou
,
Y.
Zhou
,
T.
Pham
,
P.
Grant
,
S.
Ghetmiri
,
A.
Mosleh
,
B.
Li
,
J.
Liu
,
G.
Sun
,
R.
Soref
,
J.
Tolle
,
M.
Mortazavi
, and
S.-Q.
Yu
, “
Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K
,”
ACS Photonics
5
(
3
),
827
833
(
2018
).
12.
D.
Stange
,
N.
von den Driesch
,
T.
Zabel
,
F.
Armand-Pilon
,
D.
Rainko
,
B.
Marzban
,
P.
Zaumseil
,
J.-M.
Hartmann
,
Z.
Ikonic
,
G.
Capellini
,
S.
Mantl
,
H.
Sigg
,
J.
Witzens
,
D.
Grützmacher
, and
D.
Buca
, “
GeSn/SiGeSn heterostructure and multi quantum well lasers
,”
ACS Photonics
5
(
11
),
4628
4636
(
2018
).
13.
B.
Wang
,
E.
Sakat
,
E.
Herth
,
M.
Gromovyi
,
A.
Bjelajac
,
J.
Chaste
,
G.
Patriarche
,
P.
Boucaud
,
F.
Boeuf
,
N.
Pauc
,
V.
Calvo
,
J.
Chrétien
,
M.
Frauenrath
,
A.
Chelnokov
,
V.
Reboud
,
J.-M.
Hartmann
, and
M.
El Kurdi
, “
GeSnOI mid-infrared laser technology
,”
Light
10
(
1
),
232
(
2021
).
14.
P. C.
Grant
,
J.
Margetis
,
W.
Du
,
Y.
Zhou
,
W.
Dou
,
G.
Abernathy
,
A.
Kuchuk
,
B.
Li
,
J.
Tolle
,
J.
Liu
,
G.
Sun
,
R. A.
Soref
,
M.
Mortazavi
, and
S.-Q.
Yu
, “
Study of direct bandgap type-I GeSn/GeSn double quantum well with improved carrier confinement
,”
Nanotechnology
29
(
46
),
465201
(
2018
).
15.
J.
Gong
,
J.
Zhou
,
P.
Wang
,
T.-H.
Kim
,
K.
Lu
,
S.
Min
,
R.
Singh
,
M.
Sheikhi
,
H. N.
Abbasi
,
D.
Vincent
,
D.
Wang
,
N.
Campbell
,
T.
Grotjohn
,
M.
Rzchowski
,
J.
Kim
,
E. T.
Yu
,
Z.
Mi
, and
Z.
Ma
, “
Synthesis and characteristics of transferrable single-crystalline AlN nanomembranes
,”
Adv. Electron. Mater.
9
(
5
),
2201309
(
2023
).
16.
J.
Zhou
,
J.
Gong
,
M.
Sheikhi
,
A.
Dheenan
,
Q.
Wang
,
H.
Abbasi
,
Y.
Liu
,
C.
Adamo
,
P.
Marshall
,
N.
Wriedt
,
C.
Cheung
,
Y.
Li
,
S.
Qiu
,
X.
Li
,
T.
Khee Ng
,
Q.
Gan
,
V.
Gambin
,
B. S.
Ooi
,
S.
Rajan
, and
Z.
Ma
, “
Synthesis and characteristics of a monocrystalline GaAs/β-Ga2O3 p-n heterojunction
,”
Appl. Surf. Sci.
663
,
160176
(
2024
).
17.
S.
Xie
,
M.
Sheikhi
,
S.
Xu
,
M. T.
Alam
,
J.
Zhou
,
L.
Mawst
,
Z.
Ma
, and
C.
Gupta
, “
p-GaAs/n-Ga2O3 heterojunction diode with breakdown voltage of ∼800 V
,”
Appl. Phys. Lett.
124
(
7
),
073503
(
2024
).
18.
S.
Xie
,
M.
Alam
,
J.
Gong
,
Q.
Lin
,
M.
Sheikhi
,
J.
Zhou
,
F.
Alema
,
A.
Osinsky
,
S. S.
Pasayat
,
Z.
Ma
, and
C.
Gupta
, “
0.86 kV p-Si/(001)-Ga2O3 heterojunction diode
,”
IEEE Electron Device Lett.
45
(
3
),
444
447
(
2024
).
19.
J.
Zhou
,
J.
Gong
,
S.
Lal
,
J.
Kim
,
W.
Lin
,
C.
Chen
,
C.
Li
,
Y.
Lu
,
S.
Qiu
,
Y.
Dong
,
L.
German
,
X.
Wang
,
F.
Xia
, and
Z.
Ma
, “
Characteristics of native oxides-interfaced GaAs/Ge np diodes
,”
IEEE Electron Device Lett.
45
,
1669
(
2024
).
20.
J.
Zhou
,
H.
Wang
,
P. R.
Huang
,
S.
Xu
,
Y.
Liu
,
J.
Gong
,
J.
Shen
,
D.
Vicent
,
S.
Haessly
,
A.
Abrand
,
P. K.
Mohseni
,
M.
Kim
,
S.-Q.
Yu
,
G.-E.
Chang
,
X.
Gong
, and
Z.
Ma
, “
GaAs/GeSn/Ge n–i–p diodes and light emitting diodes formed via grafting
,”
J. Vac. Sci. Technol. B
42
(
4
),
042213
(
2024
).
21.
D.
Liu
,
S. J.
Cho
,
J.-H.
Seo
,
K.
Kim
,
M.
Kim
,
J.
Shi
,
X.
Yin
,
W.
Choi
,
C.
Zhang
, and
J.
Kim
, “
Lattice-mismatched semiconductor heterostructures
,” arXiv:1812.10225 (
2018
).
22.
J.
Gong
,
D.
Kim
,
H.
Jang
,
F.
Alema
,
Q.
Wang
,
J.
Zhou
,
Y.
Li
,
T. K.
Ng
,
S.
Qiu
,
Y.
Liu
,
M.
Sheikhi
,
Y.
Lu
,
R.
Singh
,
X.
Su
,
H. N.
Abbasi
,
Q.
Lin
,
S.
Xie
,
K.
Chabak
,
G.
Jessen
,
C.
Cheung
,
V.
Gambin
,
S. S.
Pasayat
,
A.
Osinsky
,
B. S.
Ooi
,
C.
Gupta
, and
Z.
Ma
, “
Characteristics of grafted monocrystalline Si/β-Ga2O3 p–n heterojunction
,”
Appl. Phys. Lett.
124
(
26
),
262101
(
2024
).
23.
H. N.
Abbasi
,
Y.
Lu
,
J.
Zhou
,
D.
Wang
,
K.
Sun
,
P.
Wang
,
J.
Gong
,
D.
Liu
,
Y.
Liu
,
R.
Singh
,
Z.
Mi
, and
Z.
Ma
, “
Si/AlN p-n heterojunction interfaced with ultrathin SiO2
,”
Appl. Surf. Sci.
682
,
161737
(
2025
).
24.
H. N.
Abbasi
,
S.
Lee
,
H.
Jung
,
N.
Gajowski
,
Y.
Lu
,
Y.
Wang
,
D.
Kim
,
J.
Zhou
,
J.
Gong
,
C.
Chae
,
J.
Hwang
,
M.
Muduli
,
S.
Nookala
,
Z.
Ma
, and
S.
Krishna
, “
Structural and electrical properties of grafted Si/GaAsSb heterojunction
,”
Appl. Phys. Lett.
125
(
10
),
101107
(
2024
).
25.
H.
Tran
,
W.
Du
,
S. A.
Ghetmiri
,
A.
Mosleh
,
G.
Sun
,
R. A.
Soref
,
J.
Margetis
,
J.
Tolle
,
B.
Li
,
H. A.
Naseem
, and
S.-Q.
Yu
, “
Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics
,”
J. Appl. Phys.
119
(
10
),
103106
(
2016
).
26.
J.
Gong
,
J.
Zhou
,
A.
Dheenan
,
M.
Sheikhi
,
F.
Alema
,
T. K.
Ng
,
S. S.
Pasayat
,
Q.
Gan
,
A.
Osinsky
,
V.
Gambin
,
C.
Gupta
,
S.
Rajan
,
B. S.
Ooi
, and
Z.
Ma
, “
Band alignment of grafted monocrystalline Si (001)/β-Ga2O3 (010) p-n heterojunction determined by X-ray photoelectron spectroscopy
,”
Appl. Surf. Sci.
655
,
159615
(
2024
).
27.
Y.
Liu
,
J.
Gong
,
S.
Acharya
,
Y.
Li
,
A.
Abrand
,
F.
Fei
,
J. M.
Rudie
,
J.
Zhou
,
Y.
Lu
,
H.
Naeem Abbasi
,
D.
Vincent
,
S.
Haessly
,
T.-H.
Tsai
,
J.
Xiao
,
P. K.
Mohseni
,
S.-Q.
Yu
, and
Z.
Ma
, “
Characterization of AlGaAs/GeSn heterojunction band alignment via X-ray photoelectron spectroscopy
,”
Appl. Surf. Sci.
685
,
162006
(
2025
).
28.
M. M. A. J.
Voncken
,
J. J.
Schermer
,
A. T. J.
van Niftrik
,
G. J.
Bauhuis
,
P.
Mulder
,
P. K.
Larsen
,
T. P. J.
Peters
,
B.
de Bruin
,
A.
Klaassen
, and
J. J.
Kelly
, “
Etching AlAs with HF for epitaxial lift-off applications
,”
J. Electrochem. Soc.
151
(
5
),
G347
(
2004
).
29.
G.
Björk
,
A.
Karlsson
, and
Y.
Yamamoto
, “
Definition of a laser threshold
,”
Phys. Rev. A
50
(
2
),
1675
1680
(
1994
).
30.
S.
Acharya
,
H.
Stanchu
,
R.
Kumar
,
S.
Ojo
,
M.
Alher
,
M.
Benamara
,
G.-E.
Chang
,
B.
Li
,
W.
Du
, and
S.-Q.
Yu
, “
Electrically injected mid-infrared GeSn laser on Si operating at 140 K
,”
IEEE J. Sel. Top. Quantum Electron.
31
,
1
7
(
2025
).
You do not currently have access to this content.