Unconventional computing schemes inspired by biological neural networks are being explored with ever growing interest to eventually replace traditional von Neumann architecture-based computation. Realization of such schemes necessitates the development of device analogs to biological neurons and synapses. Particularly, in spin-based artificial synapses, the spin–orbit torque (SOT) can be utilized for changing between multiple resistance states of the synapse. In this work, we demonstrate synaptic behavior, namely long-term potentiation and long-term depression in a ferrimagnet (GdFe) via SOT generated using a heavy metal (Pt). The dependence of the synapse-like output on the input parameters is extensively investigated. Synaptic arrays based on experimental results are simulated and used to perform the classification of a handwritten digit dataset. Correlating the classification accuracy with the experimentally observed synaptic behavior, the performance of the synapse is found to depend on the critical switching currents. Understanding the correlation between the input parameters and synaptic performance could accelerate the development of artificial spintronic synapses possessing high operation speed, nonvolatility and plasticity, thereby enabling efficient compute in-memory systems in the near future.

1.
Big data needs a hardware revolution
,”
Nature
554
,
145
146
(
2018
).
2.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
3.
O. I.
Abiodun
,
M. U.
Kiru
,
A.
Jantan
,
A. E.
Omolara
,
K. V.
Dada
,
A. M.
Umar
,
O. U.
Linus
,
H.
Arshad
,
A. A.
Kazaure
, and
U.
Gana
, “
Comprehensive review of artificial neural network applications to pattern recognition
,”
IEEE Access
7
,
158820
158846
(
2019
).
4.
A.
Tealab
, “
Time series forecasting using artificial neural networks methodologies: A systematic review
,”
Future Comput. Inf. J.
3
(
2
),
334
340
(
2018
).
5.
P.
Sterling
and
S.
Laughlin
,
Principles of Neural Design
(
MIT Press
,
2015
).
6.
J. R.
Whitlock
,
A. J.
Heynen
,
M. G.
Shuler
, and
M. F.
Bear
, “
Learning induces long-term potentiation in the hippocampus
,”
Science
313
(
5790
),
1093
1097
(
2006
).
7.
M. F.
Bear
and
R. C.
Malenka
, “
Synaptic plasticity: LTP and LTD
,”
Curr. Opin. Neurobiol.
4
(
3
),
389
399
(
1994
).
8.
L.
Chua
, “
Memristor-The missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
9.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
10.
C.
Mead
, “
Neuromorphic electronic systems
,”
Proc. IEEE
78
(
10
),
1629
1636
(
1990
).
11.
B. J.
Shastri
,
A. N.
Tait
,
T.
Ferreira de Lima
,
W. H. P.
Pernice
,
H.
Bhaskaran
,
C. D.
Wright
, and
P. R.
Prucnal
, “
Photonics for artificial intelligence and neuromorphic computing
,”
Nat. Photonics
15
(
2
),
102
114
(
2021
).
12.
X.
Yang
,
J.
Yu
,
J.
Zhao
,
Y.
Chen
,
G.
Gao
,
Y.
Wang
,
Q.
Sun
, and
Z. L.
Wang
, “
Mechanoplastic tribotronic floating-gate neuromorphic transistor
,”
Adv. Funct. Mater.
30
(
34
),
2002506
(
2020
).
13.
S.
Lequeux
,
J.
Sampaio
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
R.
Matsumoto
,
H.
Kubota
,
S.
Yuasa
, and
J.
Grollier
, “
A magnetic synapse: Multilevel spin-torque memristor with perpendicular anisotropy
,”
Sci. Rep.
6
(
1
),
31510
(
2016
).
14.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
, “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547
(
7664
),
428
431
(
2017
).
15.
A.
Sengupta
and
K.
Roy
, “
Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives
,”
Appl. Phys. Express
11
(
3
),
030101
(
2018
).
16.
D.
Kuzum
,
R. G. D.
Jeyasingh
,
B.
Lee
, and
H.-S. P.
Wong
, “
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
,”
Nano Lett.
12
(
5
),
2179
2186
(
2012
).
17.
S.
Yu
,
Y.
Wu
,
R.
Jeyasingh
,
D.
Kuzum
, and
H.-S. P.
Wong
, “
An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation
,”
IEEE Trans. Electron Devices
58
(
8
),
2729
2737
(
2011
).
18.
A.
Chanthbouala
,
V.
Garcia
,
R. O.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N. D.
Mathur
,
M.
Bibes
,
A.
Barthélémy
, and
J.
Grollier
, “
A ferroelectric memristor
,”
Nat. Mater.
11
(
10
),
860
864
(
2012
).
19.
J.
Grollier
,
D.
Querlioz
,
K. Y.
Camsari
,
K.
Everschor-Sitte
,
S.
Fukami
, and
M. D.
Stiles
, “
Neuromorphic spintronics
,”
Nat. Electron.
3
(
7
),
360
370
(
2020
).
20.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
(
1–2
),
L1
L7
(
1996
).
21.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
(
13
),
9353
9358
(
1996
).
22.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
(
7359
),
189
193
(
2011
).
23.
P.
Gambardella
and
I. M.
Miron
, “
Current-induced spin–orbit torques
,”
Philos. Trans. R. Soc. A
369
(
1948
),
3175
3197
(
2011
).
24.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Spin-torque switching with the giant spin Hall effect of tantalum
,”
Science (1979)
336
(
6081
),
555
558
(
2012
).
25.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
, “
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
(
3
),
035004
(
2019
).
26.
K.
Garello
,
F.
Yasin
,
H.
Hody
,
S.
Couet
,
L.
Souriau
,
S. H.
Sharifi
,
J.
Swerts
,
R.
Carpenter
,
S.
Rao
,
W.
Kim
,
J.
Wu
,
K. K. V.
Sethu
,
M.
Pak
,
N.
Jossart
,
D.
Crotti
,
A.
Furnemont
, and
G. S.
Kar
, “
Manufacturable 300 mm platform solution for field-free switching SOT-MRAM
,” in
Symposium on VLSI Circuits
(
IEEE
,
2019
), pp.
T194
T195
.
27.
A. J.
Mathew
,
Y.
Gao
,
J.
Wang
,
M.
Mohammadi
,
H.
Awano
,
M.
Takezawa
,
H.
Asada
, and
Y.
Fukuma
, “
Realization of logic operations via spin–orbit torque driven perpendicular magnetization switching in a heavy metal/ferrimagnet bilayer
,”
J. Appl. Phys.
135
(
21
),
213902
(
2024
).
28.
U.
Shashank
,
R.
Medwal
,
T.
Shibata
,
R.
Nongjai
,
J. V.
Vas
,
M.
Duchamp
,
K.
Asokan
,
R. S.
Rawat
,
H.
Asada
,
S.
Gupta
, and
Y.
Fukuma
, “
Enhanced spin Hall effect in S‐implanted Pt
,”
Adv. Quantum Tech.
4
(
1
),
2000112
(
2021
).
29.
U.
Shashank
,
R.
Medwal
,
Y.
Nakamura
,
J. R.
Mohan
,
R.
Nongjai
,
A.
Kandasami
,
R. S.
Rawat
,
H.
Asada
,
S.
Gupta
, and
Y.
Fukuma
, “
Highly dose dependent damping-like spin–orbit torque efficiency in O-implanted Pt
,”
Appl. Phys. Lett.
118
(
25
),
252406
(
2021
).
30.
U.
Shashank
,
Y.
Nakamura
,
Y.
Kusaba
,
T.
Tomoda
,
R.
Nongjai
,
A.
Kandasami
,
R.
Medwal
,
R. S.
Rawat
,
H.
Asada
,
S.
Gupta
, and
Y.
Fukuma
, “
Disentanglement of intrinsic and extrinsic side-jump scattering induced spin Hall effect in N-implanted Pt
,”
Phys. Rev. B
107
(
6
),
064402
(
2023
).
31.
U.
Shashank
,
Y.
Kusaba
,
J.
Nakamura
,
A. J.
Mathew
,
K.
Imai
,
S.
Senba
,
H.
Asada
, and
Y.
Fukuma
, “
Charge–spin interconversion in nitrogen sputtered Pt via extrinsic spin Hall effect
,”
J. Phys. Condens. Matter
36
(
32
),
325802
(
2024
).
32.
U.
Shashank
,
T.
Tomoda
,
A. J.
Mathew
,
G.
Vashisht
,
K.
Imai
,
Y.
Kusaba
,
C. L.
Dong
,
C. L.
Chen
,
Y.
Horibe
,
M.
Ishimaru
,
H.
Awano
,
H.
Asada
, and
Y.
Fukuma
, “
Giant spin-orbit torque induced by spin Hall effect in amorphous Pt(P) alloys
,” Preprint (version 1) available at Research Square (
2024
).
33.
T.
Leonard
,
S.
Liu
,
M.
Alamdar
,
H.
Jin
,
C.
Cui
,
O. G.
Akinola
,
L.
Xue
,
T. P.
Xiao
,
J. S.
Friedman
,
M. J.
Marinella
,
C. H.
Bennett
, and
J. A. C.
Incorvia
, “
Shape‐dependent multi‐weight magnetic artificial synapses for neuromorphic computing
,”
Adv. Electron. Mater.
8
(
12
),
2200563
(
2022
).
34.
R. S.
Yadav
,
P.
Gupta
,
A.
Holla
,
K. I.
Ali Khan
,
P. K.
Muduli
, and
D.
Bhowmik
, “
Demonstration of synaptic behavior in a heavy-metal-ferromagnetic-metal-oxide-heterostructure-based spintronic device for on-chip learning in crossbar-array-based neural networks
,”
ACS Appl. Electron. Mater.
5
(
1
),
484
497
(
2023
).
35.
J. R.
Mohan
,
A. J.
Mathew
,
K.
Nishimura
,
R.
Feng
,
R.
Medwal
,
S.
Gupta
,
R. S.
Rawat
, and
Y.
Fukuma
, “
Classification tasks using input driven nonlinear magnetization dynamics in spin Hall oscillator
,”
Sci. Rep.
13
(
1
),
7909
(
2023
).
36.
S.
Ranjbar
,
S.
Kambe
,
S.
Sumi
,
P. V.
Thach
,
Y.
Nakatani
,
K.
Tanabe
, and
H.
Awano
, “
Elucidation of the mechanism for maintaining ultrafast domain wall mobility over a wide temperature range
,”
Mater. Adv.
3
(
18
),
7028
7036
(
2022
).
37.
S. K.
Kim
,
G. S. D.
Beach
,
K.-J.
Lee
,
T.
Ono
,
T.
Rasing
, and
H.
Yang
, “
Ferrimagnetic spintronics
,”
Nat. Mater.
21
(
1
),
24
34
(
2022
).
38.
M.
Mohammadi
,
S.
Sumi
,
K.
Tanabe
, and
H.
Awano
, “
Boosting domain wall velocity and stability in ferrimagnetic GdFe nanowires by applying laser-annealing process
,”
Appl. Phys. Lett.
123
(
20
),
202403
(
2023
).
39.
M.
Mohammadi
,
S.
Ranjbar
,
P.
Van Thach
,
S.
Sumi
,
K.
Tanabe
, and
H.
Awano
, “
Exploring fast domain wall motion and DMI realization in compensated ferrimagnetic nanowires
,”
J. Phys. D: Appl. Phys.
58
(
5
),
055002
(
2025
).
40.
B.
Dieny
and
M.
Chshiev
, “
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
,”
Rev. Mod. Phys.
89
(
2
),
025008
(
2017
).
41.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
, “
Anomalous Hall effect
,”
Rev. Mod. Phys.
82
(
2
),
1539
1592
(
2010
).
42.
P.-Y.
Chen
,
X.
Peng
, and
S.
Yu
, “
NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2017
), pp.
6.1.1
6.1.4
.
43.
Y.
Luo
,
X.
Peng
, and
S.
Yu
, “
MLP+NeuroSimV3.0
,” in
Proceedings of the International Conference on Neuromorphic Systems
(
ACM
,
New York, NY
,
2019
), pp.
1
7
.
44.
U. H.
Pi
,
K.
Won Kim
,
J. Y.
Bae
,
S. C.
Lee
,
Y. J.
Cho
,
K. S.
Kim
, and
S.
Seo
, “
Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer
,”
Appl. Phys. Lett.
97
(
16
),
162507
(
2010
).
45.
J.
Kim
,
J.
Sinha
,
M.
Hayashi
,
M.
Yamanouchi
,
S.
Fukami
,
T.
Suzuki
,
S.
Mitani
, and
H.
Ohno
, “
Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO
,”
Nat. Mater.
12
(
3
),
240
245
(
2013
).
46.
S.
La Barbera
,
D. R. B.
Ly
,
G.
Navarro
,
N.
Castellani
,
O.
Cueto
,
G.
Bourgeois
,
B.
De Salvo
,
E.
Nowak
,
D.
Querlioz
, and
E.
Vianello
, “
Narrow heater bottom electrode-based phase change memory as a bidirectional artificial synapse
,”
Adv. Electron. Mater.
4
(
9
),
1800223
(
2018
).
47.
S.
Brivio
,
D. R. B.
Ly
,
E.
Vianello
, and
S.
Spiga
, “
Non-linear memristive synaptic dynamics for efficient unsupervised learning in spiking neural networks
,”
Front. Neurosci.
15
,
580909
(
2021
).
You do not currently have access to this content.