We experimentally demonstrated a circularly polarized cavity mode in a GaAs-based chiral photonic crystal (PhC) containing a planar defect. Low-temperature photoluminescence measurements of InAs quantum dots (QDs) embedded in the planar defect revealed a polarization bandgap for left-handed circularly polarized light in the near-infrared spectrum. Within this bandgap, where the QDs preferably emitted right-handed circularly polarized light, we observed a distinct cavity mode peak characterized by left-handed circular polarization (CP). This observation indicates that the chiral PhC modifies the optical density of states for left-handed circular polarization to be suppressed in the polarization bandgap and be largely enhanced at the cavity mode. The results obtained may not only provide photonic devices such as compact circularly polarized light sources but also promote strong coupling between circularly polarized photons and excitons in solid states or molecules, paving the way for advancements in polaritonics, spintronics, and quantum information technology.

1.
F.
Meier
and
B. P.
Zakharchenya
,
Optical Orientation
(
North Holland Publishing Co.
,
North-Holland, Amsterdam
,
2012
).
2.
H.
Ando
,
T.
Sogawa
, and
H.
Gotoh
, “
Photon-spin controlled lasing oscillation in surface-emitting lasers
,”
Appl. Phys. Lett.
73
,
566
(
1998
).
3.
S.
Iba
,
S.
Koh
,
K.
Ikeda
, and
H.
Kawaguchi
, “
Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells
,”
Appl. Phys. Lett.
98
,
081113
(
2011
).
4.
K. D.
Greve
,
L.
Yu
,
P. L.
McMahon
,
J. S.
Pelc
,
C. M.
Natarajan
,
N. Y.
Kim
,
E.
Abe
,
S.
Maier
,
C.
Schneider
,
M.
Kamp
,
S.
Hofling
,
R. H.
Hadfield
,
A.
Forchel
,
M. M.
Fejer
, and
Y.
Yamamoto
, “
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength
,”
Nature
491
,
421
425
(
2012
).
5.
W. B.
Gao
,
P.
Fallahi
,
E.
Togan
,
J. M.
Sanchez
, and
A.
Imamoglu
, “
Observation of entanglement between a quantum dot spin and a single photon
,”
Nature
491
,
426
429
(
2012
).
6.
A. A.
Demenev
,
V. D.
Kulakovskii
,
C.
Schneider
,
S.
Brodbeck
,
M.
Kamp
,
S.
Hőfling
,
S. V.
Lobanov
,
T.
Weiss
,
N. A.
Gippius
, and
S. G.
Tikhodeev
,
Appl. Phys. Lett.
109
,
171106
(
2016
).
7.
K.
Konishi
,
M.
Nomura
,
N.
Kumagai
,
S.
Iwamoto
,
Y.
Arakawa
, and
M. K.
Gonokami
, “
Circularly polarized light emission from semiconductor planar chiral nanostructures
,”
Phys. Rev. Lett.
106
,
057402
(
2011
).
8.
S. V.
Lobanov
,
S. G.
Tikhodeev
,
N. A.
Gippius
,
A. A.
Maksimov
,
E. V.
Filatov
,
I. I.
Tartakovskii
,
V. D.
Kulakovskii
,
T.
Weiss
,
C.
Schneider
,
J.
Geßler
,
M.
Kamp
, and
S.
Hőfling
, “
Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs
,”
Phys. Rev. B
92
,
205309
(
2015
).
9.
M. V.
Gorkunov
,
A. A.
Antonov
,
A. V.
Mamonova
,
E. A.
Muljarov
, and
Y.
Kivshar
, “
Substrate-induced maximum optical chirality of planar dielectric structures
,”
Adv. Opt. Mater.
13
,
2402133
(
2024
).
10.
K.
Voronin
,
A. S.
Taradin
,
M. V.
Gorkunov
, and
D. G.
Baranov
, “
Single-handedness chiral optical cavities
,”
ACS Photonics
9
,
2652
(
2022
).
11.
S. A.
Dyakov
,
N. S.
Salakhova
,
A. V.
Ignatov
,
I. M.
Fradkin
,
V. P.
Panov
,
J.-K.
Song
, and
N. A.
Gippius
, “
Chiral light in twisted Fabry-Pérot cavities
,”
Adv. Opt. Mater.
12
,
2302502
(
2024
).
12.
J. C. W.
Lee
and
C. T.
Chan
, “
Polarization gaps in spiral photonic crystals
,”
Opt. Express
13
,
8083
8088
(
2005
).
13.
S.
Takahashi
,
T.
Tajiri
,
Y.
Arakawa
,
S.
Iwamoto
, and
W. L.
Vos
, “
Optical properties of chiral three-dimensional photonic crystals
,”
Phys. Rev. B
107
,
165307
(
2023
).
14.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
Princeton NJ
,
2008
).
15.
K.
Sakoda
,
Optical Properties of Photonic Crystals
, 2nd ed. (
Springer
,
New York
,
2005
).
16.
V. I.
Kopp
,
Z.-Q.
Zhang
, and
A. Z.
Genack
, “
Lasing in chiral photonic structures
,”
Prog. Quantum Electron.
27
,
369
416
(
2003
).
17.
J.
Schmidtke
,
W.
Stille
, and
H.
Finkelmann
, “
Defect mode emission of a dye doped cholesteric polymer network
,”
Phys. Rev. Lett.
90
,
083902
(
2003
).
18.
M. H.
Song
,
N. Y.
Ha
,
K.
Amemiya
,
B.
Park
,
Y.
Takanishi
,
K.
Ishikawa
,
J. W.
Wu
,
S.
Nishimura
,
T.
Toyooka
, and
H.
Takezoe
, “
Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure
,”
Adv. Mater.
18
,
193
197
(
2006
).
19.
S. M.
Jeong
,
N. Y.
Ha
,
Y.
Takanishi
,
K.
Ishikawa
,
H.
Takezoe
,
S.
Nishimura
, and
G.
Suzaki
, “
Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer
,”
Appl. Phys. Lett.
90
,
261108
(
2007
).
20.
T.
Fujita
,
K.
Morimoto
,
H.
Kiyama
,
G.
Allison
,
M.
Larsson
,
A.
Ludwig
,
S. R.
Valentin
,
A. D.
Wieck
,
A.
Oiwa
, and
S.
Tarucha
, “
Angular momentum transfer from photon polarization to an electron spin in a gate-defined quantum dot
,”
Nat. Commun.
10
,
2991
(
2019
).
21.
D. G.
Baranov
,
C.
Schäfer
, and
M. V.
Gorkunov
, “
Toward molecular chiral polaritons
,”
ACS Photonics
10
,
2440
2455
(
2023
).
22.
E.
Reusch
, “
Untersuchung ü ber Glimmercombinationen
,”
Ann. Phys. Chem.
214
,
628
638
(
1869
).
23.
B.
Lou
,
N.
Zhao
,
M.
Minkov
,
C.
Guo
,
M.
Orenstein
, and
S.
Fan
, “
Theory for twisted bilayer photonic crystal slabs
,”
Phys. Rev. Lett.
126
,
136101
(
2021
).
24.
K. V.
Voronin
,
A. N.
Toksumakov
,
G. A.
Ermolaev
,
A. S.
Slavich
,
M. K.
Tatmyshevskiy
,
S. M.
Novikov
,
A. A.
Vyshnevyy
,
A. V.
Arsenin
,
K. S.
Novoselov
,
D. A.
Ghazaryan
,
V. S.
Volkov
, and
D. G.
Baranov
, “
Chiral photonic super-crystals based on helical van der Waals homostructures
,”
Laser Photonics Rev.
18
,
2301113
(
2024
).
25.
S.
Takahashi
,
T.
Tajiri
,
Y.
Ota
,
J.
Tatebayashi
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Circular dichroism in a three-dimensional semiconductor chiral photonic crystal
,”
Appl. Phys. Lett.
105
,
051107
(
2014
).
26.
K. Y.
Bliokh
and
F.
Nori
, “
Characterizing optical chirality
,”
Phys. Rev. A
83
,
021803
(
2011
).
27.
J.
Mun
,
M.
Kim
,
Y.
Yang
,
T.
Badloe
,
J.
Ni
,
Y.
Chen
,
C.-W.
Qiu
, and
J.
Rho
, “
Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena
,”
Light. Sci. Appl.
9
,
139
(
2020
).
28.
S.
Takahashi
,
Y.
Ota
,
T.
Tajiri
,
J.
Tatebayashi
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission
,”
Phys. Rev. B
96
,
195404
(
2017
).
29.
S.
Takahashi
,
E.
Kimura
,
T.
Ishida
,
T.
Tajiri
,
K.
Watanabe
,
K.
Yamashita
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Fabrication of three-dimensional photonic crystals for near-infrared light by micro-manipulation technique under optical microscope observation
,”
Appl. Phys. Express
15
,
015001
(
2022
).
30.
K.
Aoki
,
D.
Guimard
,
M.
Nishioka
,
M.
Nomura
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity
,”
Nat. Photonics
2
,
688
692
(
2008
).
31.
A.
Tandaechanurat
,
S.
Ishida
,
D.
Guimard
,
M.
Nomura
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap
,”
Nat. Photonics
5
,
91
94
(
2011
).
32.
S.
Takahashi
,
T.
Tajiri
,
K.
Watanabe
,
Y.
Ota
,
S.
Iwamoto
, and
Y.
Arakawa
, “
High-Q nanocavities in semiconductor-based three-dimensional photonic crystals
,”
Electron. Lett.
54
,
305
(
2018
).
33.
A.
Tandaechanurat
,
S.
Ishida
,
K.
Aoki
,
D.
Guimard
,
M.
Nomura
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots
,”
Appl. Phys. Lett.
94
,
171115
(
2009
).
34.
T.
Tajiri
,
S.
Takahashi
,
Y.
Ota
,
J.
Tatebayashi
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Demonstration of a three-dimensional photonic crystal nanocavity in a ⟨110⟩-layered diamond structure
,”
Appl. Phys. Lett.
107
,
071102
(
2015
).
You do not currently have access to this content.