In this Letter, the Venturi effect is introduced to change the vibration behaviors of a downwind bluff body and a piezoelectric wind-induced vibration energy harvester using the Venturi effect (VE-PWVEH) is reported to offer an alternative solution to enable a high-performance downwind PWVEH. Also, the power generation characteristics were readily adjusted by the flow channel forming the Venturi effect without modifying the PWVEH structure. So, the VE-PWVEH could possess both great power-generating capability at low wind speed and strong robustness at high wind speed. The results demonstrated that both the output voltage and cut-in wind speed were affected by the attack angle of two rectangular plates used for stimulating the constricted channel. There was an optimal attack angle of 60° where a maximum peak voltage of the VE-PWVEH was increased by 621% and the cut-in wind speed was reduced by 171% compared with the harvester without the Venturi effect. Besides, it demonstrated the VE-PWVEH could achieve an output power of 0.863 mW and illuminate about 120 blue LEDs in series. The introduction of the Venturi effect provides a simple and viable method of flow field disturbance to tune the performance of PWVEHs.

1.
A. B.
Noel
,
A.
Abdaoui
,
T.
Elfouly
,
M. H.
Ahmed
,
A.
Badawy
, and
M. S.
Shehata
, “
Structural health monitoring using wireless sensor networks: A comprehensive survey
,”
IEEE Commun. Surv. Tutorials
19
,
1403
1423
(
2017
).
2.
A.
Sofi
,
J. J.
Regita
,
B.
Rane
, and
H. H.
Lau
, “
Structural health monitoring using wireless smart sensor network - An overview
,”
Mech. Syst. Sig. Process.
163
,
108113
(
2022
).
3.
E. F.
Rojas
,
S.
Faroughi
,
A.
Abdelkefi
, and
Y. H.
Park
, “
Investigations on the performance of piezoelectric-flexoelectric energy harvesters
,”
Appl. Energy
288
,
116611
(
2021
).
4.
G.
Hu
,
C.
Lan
,
L.
Tang
,
B.
Zhou
, and
Y.
Yang
, “
Dynamics and power limit analysis of a galloping piezoelectric energy harvester under forced excitation
,”
Mech. Syst. Sig. Process.
168
,
108724
(
2022
).
5.
Y.
Hu
,
B.
Yang
,
X.
Chen
,
X.
Wang
, and
J.
Liu
, “
Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration
,”
Energy Convers. Manage.
162
,
145
158
(
2018
).
6.
Z.
Rong
,
B.
Cao
, and
J.
Hu
, “
Stability analysis on an aeroelastic system for design of a flutter energy harvester
,”
Aerosp. Sci. Technol.
60
,
203
209
(
2017
).
7.
G.
Xia
,
Q.
Lu
,
M.
Cai
,
X.
Li
,
D.
Zhang
,
C.
Wang
, and
W.-H.
Liao
, “
Comprehensive investigation of a broadband wearable energy harvester using adaptive kinetic energy reallocation mechanism
,”
Mech. Syst. Sig. Process.
206
,
110907
(
2024
).
8.
X.
Li
,
Y.
Li
,
M.
Zhang
,
Z.
Yang
,
K.
Wang
, and
C.
Huang
, “
Carbon nano thorn arrays based water/cold resisted nanogenerator for wind energy harvesting and speed sensing
,”
Nano Energy
90
,
106571
(
2021
).
9.
Z.
Wu
,
Z.
Cao
,
R.
Ding
,
S.
Wang
,
Y.
Chu
, and
X.
Ye
, “
An electrostatic-electromagnetic hybrid generator with largely enhanced energy conversion efficiency
,”
Nano Energy
89
,
106425
(
2021
).
10.
W.
Liao
,
X.
Su
, and
F.
Fang
, “
A centrifugal spring mechanism empowers self-adjusting in piezoelectric wind energy harvesting
,”
Nano Energy
133
,
110462
(
2025
).
11.
Z.
Kuang
,
Z.
Zhang
,
W.
Liao
,
S.
Lin
,
K.
Wang
,
J.
Zhang
, and
J.
Kan
, “
Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion
,”
Energy
308
,
133020
(
2024
).
12.
J.
Wang
,
W.
Zhao
,
Z.
Su
,
G.
Zhang
,
P.
Li
, and
D.
Yurchenko
, “
Enhancing vortex-induced vibrations of a cylinder with rod attachments for hydrokinetic power generation
,”
Mech. Syst. Sig. Process.
145
,
106912
(
2020
).
13.
F.
Eydi
,
A.
Mojra
, and
R.
Abdi
, “
Comparative analysis of the flow control over a circular cylinder with detached flexible and rigid splitter plates
,”
Phys. Fluids
34
,
113604
(
2022
).
14.
K.
Lee
,
Y.
Kozato
,
S.
Kikuchi
, and
S.
Imao
, “
Numerical simulation of flow control around a rectangular cylinder by dielectric barrier discharge plasma actuators
,”
Phys. Fluids
34
,
077102
(
2022
).
15.
F.
Eydi
and
A.
Mojra
, “
A numerical study on the benefits of passive-arc plates on drag and noise reductions of a cylinder in turbulent flow
,”
Phys. Fluids
35
,
085102
(
2023
).
16.
E.
Fatahian
,
F.
Ismail
,
M. H. H.
Ishak
, and
W. S.
Chang
, “
Aerodynamic performance improvement of savonius wind turbine through a passive flow control method using grooved surfaces on a deflector
,”
Ocean Eng.
284
,
115282
(
2023
).
17.
S.
Chen
,
C. H.
Wang
, and
L.
Zhao
, “
A two-degree-of-freedom aeroelastic energy harvesting system with coupled vortex-induced-vibration and wake galloping mechanisms
,”
Appl. Phys. Lett.
122
,
063901
(
2023
).
18.
P.
Poudel
,
S.
Sharma
,
M. N. M.
Ansari
,
R.
Vaish
,
R.
Kumar
,
S. M.
Ibrahim
,
P.
Thomas
, and
C.
Bowen
, “
Enhancing the performance of piezoelectric wind energy harvester using curve‐shaped attachments on the bluff body
,”
Global Challenges
7
,
2100140
(
2023
).
19.
L. B.
Zhang
,
A.
Abdelkefi
,
H. L.
Dai
,
R.
Naseer
, and
L.
Wang
, “
Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations
,”
J. Sound Vib.
408
,
210
219
(
2017
).
20.
J.
Wang
,
Y.
Zhang
,
M.
Liu
, and
G.
Hu
, “
Etching metasurfaces on bluff bodies for vortex-induced vibration energy harvesting
,”
Int. J. Mech. Sci.
242
,
108016
(
2023
).
21.
J.
Wang
,
S.
Gu
,
A.
Abdelkefi
, and
C.
Bose
, “
Enhancing piezoelectric energy harvesting from the flow-induced vibration of a circular cylinder using dual splitters
,”
Smart Mater. Struct.
30
,
05LT01
(
2021
).
22.
W.
Sun
,
J.
Li
,
Z.
Wang
,
Y.
Zhong
,
Z.
Zhang
, and
G.
Cheng
, “
A wind-direction adaptive piezoelectric energy harvester employing small wing passive control configuration
,”
Appl. Phys. Lett.
124
,
233902
(
2024
).
23.
B.
Tang
,
X.
Fan
,
J.
Wang
, and
W.
Tan
, “
Energy harvesting from flow-induced vibrations enhanced by meta-surface structure under elastic interference
,”
Int. J. Mech. Sci.
236
,
107749
(
2022
).
24.
J.
Kan
,
J.
Wang
,
F.
Meng
,
C.
He
,
S.
Li
,
S.
Wang
, and
Z.
Zhang
, “
A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle
,”
Energy
262
,
125429
(
2023
).
25.
L. B.
Zhang
,
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
, “
Improving the performance of aeroelastic energy harvesters by an interference cylinder
,”
Appl. Phys. Lett.
111
,
073904
(
2017
).
26.
J.
Wang
,
L.
Geng
,
K.
Yang
,
L.
Zhao
,
F.
Wang
, and
D.
Yurchenko
, “
Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration
,”
Nonlinear Dyn.
100
,
1963
1983
(
2020
).
27.
W.
Yuan
,
S.
Laima
,
W.
Chen
,
H.
Li
, and
H.
Hu
, “
Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder
,”
J. Fluids Struct.
70
,
145
161
(
2017
).
28.
N.
Shiraishi
and
M.
Matsumoto
, “
On classification of vortex-induced oscillation and its application for bridge structures
,”
J. Wind Eng. Ind. Aerodyn.
14
,
419
430
(
1983
).
29.
B.
Li
,
Z.
Luo
,
M.
Sandberg
, and
J.
Liu
, “
Revisiting the ‘Venturi effect’ in passage ventilation between two non-parallel buildings
,”
Build. Environ.
94
,
714
722
(
2015
).
30.
W.
Liao
,
Z.
Huang
,
H.
Sun
,
X.
Huang
,
Y.
Gu
,
W.
Chen
,
Z.
Zhang
, and
J.
Kan
, “
Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting
,”
Energy
281
,
128264
(
2023
).
31.
C.
Mannini
,
A. M.
Marra
, and
G.
Bartoli
, “
VIV–Galloping instability of rectangular cylinders: Review and new experiments
,”
J. Wind Eng. Ind. Aerodyn.
132
,
109
124
(
2014
).
32.
C.
Mannini
,
A. M.
Marra
,
T.
Massai
, and
G.
Bartoli
, “
Interference of vortex-induced vibration and transverse galloping for a rectangular cylinder
,”
J. Fluids Struct.
66
,
403
423
(
2016
).
You do not currently have access to this content.