In this Letter, we demonstrate the application of Deep Level Transient Spectroscopy (DLTS) and Laplace DLTS (L-DLTS) techniques to unintentionally doped β-Ga2O3 crystals grown by the Czochralski method. It is clearly shown that the capacitance signal associated with the electron emission from a trap level previously identified in the literature as E14 and characterized by an activation energy of 0.18 eV is found to be a superposition of electron emissions from two closely spaced energy levels. Furthermore, we noted that the corresponding L-DLTS signal splits into two well separated components with activation energies of 196 and 209 meV, and the splitting occurs as the electric field in the space charge region of a Schottky diode exceeds 2 × 107 V/m (0.2 MV/cm). Additionally, a strong dependency of DLTS and L-DLTS signals on the electric field strength and resulting enhancement of the electron emission from these two trap states agree well with the 1D Poole–Frenkel (PF) model, suggesting donor-like behavior of both states. Finally, we found that the barrier height for thermal emission of the electrons is significantly reduced in our samples by 121 meV due to the PF effect for experimental conditions corresponding to an electric field of 3.5 × 107 V/m (0.35 MV/cm).

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
2.
D.
Guo
,
Q.
Guo
,
Z.
Chen
,
Z.
Wu
,
P.
Li
, and
W.
Tang
,
Mater. Today Phys.
11
,
100157
(
2019
).
3.
Z.
Galazka
,
Semicond. Sci. Technol.
33
,
113001
(
2018
).
4.
A. J.
Green
,
J.
Speck
,
G.
Xing
et al,
APL Mater.
10
,
029201
(
2022
).
5.
J. S.
Speck
and
E.
Farzana
(Invited Editor),
Ultrawide Bandgap β-Ga2O3 Semiconductor: Theory and Applications
(
American Institute of Physics (AIP)
,
New York
,
2023
).
6.
C.
Janowitz
,
V.
Scherer
,
M.
Mohamed
,
A.
Krapf
,
H.
Dwelk
,
R.
Manzke
,
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
R.
Fornari
,
M.
Michling
,
D.
Schmeißer
,
J. R.
Weber
,
J. B.
Varley
, and
C. G.
Van de Walle
,
New J. Phys.
13
,
085014
(
2011
).
7.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
8.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
9.
Z.
Galazka
,
J. Appl. Phys.
131
,
031103
(
2022
).
10.
K.
Hoshikawa
,
T.
Kobayashi
,
E.
Ohba
, and
T.
Kobayashi
,
J. Cryst. Growth
546
,
125778
(
2020
).
11.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
, and
Y.
Yamaoka
, “
Floating zone method, edge-defined film-fed growth method, and wafer manufacturing
,” in
Gallium Oxide: Crystal Growth, Materials Properties, and Devices
, edited by
M.
Higashiwaki
and
S.
Fujita
(
Springer Nature Switzerland AG
,
2020
).
12.
Z.
Galazka
,
K.
Irmscher
,
M.
Pietsch
,
S.
Ganschow
,
D.
Schulz
,
D.
Klimm
,
I. M.
Hanke
,
T.
Schroeder
, and
M.
Bickermann
,
J. Mater. Res.
36
,
4746
4755
(
2021
).
13.
F.
Alema
,
A.
Osinsky
,
N.
Orishchin
,
N.
Valente
,
Y.
Zhang
,
A.
Mauze
, and
J. S.
Speck
,
APL Mater.
8
,
021110
(
2020
).
14.
F.
Alema
,
T.
Itoh
,
S.
Vogt
,
J. S.
Speck
, and
A.
Osinsky
,
Jpn. J. Appl. Phys.
61
,
100903
(
2022
).
15.
L.
Meng
,
Z.
Feng
,
F. M. A. U.
Bhuiyan
, and
H.
Zhao
,
Cryst. Growth Des.
22
,
3896
3904
(
2022
).
16.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
17.
R.
Roy
,
V. G.
Hill
, and
E. F.
Osborn
,
J. Am. Chem. Soc.
74
,
719
722
(
1952
).
18.
S.
Yoshioka
,
H.
Hayashi
,
A.
Kuwabara
,
F.
Oba
,
K.
Matsunaga
, and
I.
Tanaka
,
J. Phys.: Condens. Matter
19
,
346211
(
2007
).
19.
Y.
Yao
,
S.
Okur
,
L. A. M.
Lyle
,
G. S.
Tompa
,
T.
Salagaj
,
N.
Sbrockey
,
R. F.
Davis
, and
L. M.
Porter
,
Mater. Res. Lett.
6
(
5
),
268
275
(
2018
).
20.
Z.
Wang
,
X.
Chen
,
F.-F.
Ren
,
S.
Gu
, and
J.
Ye
,
J. Phys. D: Appl. Phys.
54
,
043002
(
2021
).
21.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
H. L.
Zhang
,
APL Mater.
8
,
020906
(
2020
).
22.
H.
Ghadi
,
J. F.
McGlone
,
C. M.
Jackson
,
E.
Farzana
,
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
H.
Zhao
,
A. R.
Arehart
, and
S. A.
Ringel
,
APL Mater.
8
,
021111
(
2020
).
23.
K.
Irmscher
,
Z.
Galazka
,
M.
Pietsch
,
R.
Uecker
, and
R.
Fornari
,
J. Appl. Phys.
110
,
063720
(
2011
).
24.
C. A.
Dawe
,
V. P.
Markevich
,
M. P.
Halsall
,
I. D.
Hawkins
,
A. R.
Peaker
,
A.
Nandi
,
I.
Sanyal
, and
M.
Kuball
,
J. Appl. Phys.
136
,
045705
(
2024
).
25.
M. E.
Ingebrigtsen
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
,
A.
Perron
,
L.
Vines
, and
J. B.
Varley
,
APL Mater.
7
,
022510
(
2019
).
26.
E.
Farzana
,
M. F.
Chaiken
,
T. E.
Blue
,
A. R.
Arehart
, and
S. A.
Ringel
,
APL Mater.
7
,
022502
(
2019
).
27.
J. F.
McGlone
,
H.
Ghadi
,
E.
Cornuelle
,
A.
Armstrong
,
G.
Burns
,
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
H.
Zhao
,
A. R.
Arehart
, and
S. A.
Ringel
,
J. Appl. Phys.
133
,
045702
(
2023
).
28.
C.
Zimmermann
,
Y. K.
Frodason
,
A. W.
Barnard
,
J. B.
Varley
,
K.
Irmscher
,
Z.
Galazka
,
A.
Karjalainen
,
W. E.
Meyer
,
F. D.
Auret
, and
L.
Vines
,
Appl. Phys. Lett.
116
,
072101
(
2020
).
29.
Z.
Zhang
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
,
Appl. Phys. Lett.
108
,
052105
[Database] (
2016
).
30.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
P. B.
Lagov
, and
T. V.
Kulevoy
,
APL Mater.
6
,
96102
(
2018
).
31.
E.
Farzana
,
E.
Ahmadi
,
J. S.
Speck
,
A. R.
Arehart
, and
S. A.
Ringel
,
J. Appl. Phys.
123
,
161410
(
2018
).
32.
C.
Zimmermann
,
V.
Rønning
,
Y.
Kalmann Frodason
,
V.
Bobal
,
L.
Vines
, and
J. B.
Varley
,
Phys. Rev. Mater.
4
,
074605
(
2020
).
33.
H.
Peelaers
,
J. B.
Varley
,
J. S.
Speck
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
112
,
242101
(
2018
).
34.
J. B.
Varley
,
A.
Perron
,
V.
Lordi
,
D.
Wickramaratne
, and
J. L.
Lyons
,
Appl. Phys. Lett.
116
,
172104
(
2020
).
35.
J. B.
Varley
,
J. Mater. Res.
36
,
4790
4803
(
2021
).
36.
R.
Sun
,
Y. K.
Ooi
,
A.
Bhattacharyya
,
M.
Saleh
,
S.
Krishnamoorthy
,
K. G.
Lynn
, and
M.
Scarpulla
,
Appl. Phys. Lett.
117
,
212104
(
2020
).
37.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
38.
L.
Dobaczewski
,
A. R.
Peaker
, and
K. B.
Nielsen
,
J. Appl. Phys.
96
,
4689
(
2004
).
39.
P.
Seyidov
,
J. B.
Varley
,
Y. K.
Frodason
et al,
Adv. Electron. Mater.
11
,
2300428
(
2023
).
40.
J.
Montes
,
C.
Kopas
,
H.
Chen
,
X.
Huang
,
T.-h.
Yang
,
K.
Fu
,
C.
Yang
,
J.
Zhou
,
X.
Qi
,
H.
Fu
, and
Y.
Zhao
,
J. Appl. Phys.
128
,
205701
(
2020
).
41.
H.
Lefevre
and
M.
Schulz
,
Appl. Phys.
12
,
45
(
1977
).
42.
V. P.
Markevich
,
M. P.
Halsall
,
L.
Sun
,
I. F.
Crowe
,
A. R.
Peaker
,
P.
Kruszewski
,
J.
Plesiewicz
,
P.
Prystawko
,
S.
Bulka
, and
R.
Jakiela
,
Phys. Status Solidi (b)
260
,
2200545
(
2023
).
43.
P.
Kruszewski
,
V. P.
Markevich
,
A. R.
Peaker
,
J.
Plesiewicz
,
P.
Prystawko
,
M. P.
Halsall
, and
L.
Sun
,
Appl. Phys. Lett.
123
,
222105
(
2023
).
44.
P.
Kruszewski
,
J.
Plesiewicz
,
S.
Grzanka
,
E.
Grzanka
,
P.
Prystawko
,
V. P.
Markevich
,
A. R.
Peaker
,
L.
Sun
,
C. A.
Dawe
, and
M. P.
Halsall
,
Appl. Phys. Lett.
124
,
232103
(
2024
).
45.
J. L.
Hartke
,
J. Appl. Phys.
39
,
4871
[Database] (
1968
).
46.
O.
Mitrofanov
and
M.
Manfra
,
J. Appl. Phys.
95
,
6414
(
2004
).
47.
A.
Fiedler
,
R.
Schewski
,
Z.
Galazka
, and
K.
Irmscher
,
ECS J. Solid State Sci. Technol.
8
,
Q3083
Q3085
(
2019
).
You do not currently have access to this content.