Acoustic holography is a promising technique for contactless manipulation, remote sensing, and energy harvesting. It involves retrieving holograms used to modulate acoustic sources for reconstructing target acoustic fields. The performance of reconstruction is primarily determined by two key criteria, including the spatial bandwidth product, which measures the pixel number representing information capacity, and the resolution, which quantifies the pixel size supporting detail gain. However, existing techniques face limitations in reconstructing high-fidelity, dynamic, and real-time acoustic fields with enhanced spatial bandwidth product and resolution across the entire aperture size. These challenges stem from the reliance on physically constrained holograms with static nature or relatively low spatial bandwidth product and resolution. Here, we introduce super-resolution acoustic holography, wherein the spatial bandwidth and resolution of the reconstructed target acoustic fields surpass those of the retrieved source holograms, especially within the same aperture size. We further develop a deep learning strategy that combines a classical neural network architecture with a linear accumulation based physical model, allowing for the customization of reconstructed acoustic planes with higher resolution while maintaining the same lateral coverages. Extensive algorithmic validations, numerical simulations, and practical experiments demonstrate the capability of our method to achieve high-fidelity, dynamic, real-time super-resolution acoustic holography, rendering its potential to advance practical applications in holographic acoustics.

1.
Y.
Gu
,
C.
Chen
,
J.
Rufo
,
C.
Shen
,
Z.
Wang
,
P.-H.
Huang
,
H.
Fu
,
P.
Zhang
,
S. A.
Cummer
,
Z.
Tian
, and
T. J.
Huang
, “
Acoustofluidic holography for micro-to nanoscale particle manipulation
,”
ACS Nano
14
,
14635
14645
(
2020
).
2.
Z.
Ma
,
A. W.
Holle
,
K.
Melde
,
T.
Qiu
,
K.
Poeppel
,
V. M.
Kadiri
, and
P.
Fischer
, “
Acoustic holographic cell patterning in a biocompatible hydrogel
,”
Adv. Mater.
32
,
1904181
(
2020a
).
3.
D.
Wu
,
D.
Baresch
,
C.
Cook
,
Z.
Ma
,
M.
Duan
,
D.
Malounda
,
D.
Maresca
,
M. P.
Abundo
,
J.
Lee
,
S.
Shivaei
,
D. R.
Mittelstein
,
T.
Qui
,
P.
Fischer
, and
M. G.
Shapiro
, “
Biomolecular actuators for genetically selective acoustic manipulation of cells
,”
Sci. Adv.
9
,
eadd9186
(
2023
).
4.
M.
Bakhtiari-Nejad
,
A.
Elnahhas
,
M. R.
Hajj
, and
S.
Shahab
, “
Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment
,”
J. Appl. Phys.
124
,
244901
(
2018
).
5.
S.
Bansal
,
C.
Choi
,
J.
Hardwick
,
B.
Bagchi
,
M. K.
Tiwari
, and
S.
Subramanian
, “
Transmissive labyrinthine acoustic metamaterial-based holography for extraordinary energy harvesting
,”
Adv. Eng. Mater.
25
,
2201117
(
2023
).
6.
G.
Kook
,
Y.
Jo
,
C.
Oh
,
X.
Liang
,
J.
Kim
,
S.-M.
Lee
,
S.
Kim
,
J.-W.
Choi
, and
H. J.
Lee
, “
Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography
,”
Microsyst. Nanoeng.
9
,
45
(
2023
).
7.
L.
Shi
,
Y.
Jiang
,
F. R.
Fernandez
,
G.
Chen
,
L.
Lan
,
H.-Y.
Man
,
J. A.
White
,
J.-X.
Cheng
, and
C.
Yang
, “
Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter
,”
Light Sci. Appl.
10
,
143
(
2021
).
8.
A. R.
Rezai
,
P.-F.
D'Haese
,
V.
Finomore
,
J.
Carpenter
,
M.
Ranjan
,
K.
Wilhelmsen
,
R. I.
Mehta
,
P.
Wang
,
U.
Najib
,
C.
Vieira Ligo Teixeira
,
T.
Arsiwala
,
A.
Tarabishy
,
P.
Tirumalai
,
D. O.
Claassen
,
S.
Hodder
, and
M. W.
Haut
, “
Ultrasound blood-brain barrier opening and aducanumab in Alzheimer's disease
,”
N. Engl. J. Med.
390
,
55
62
(
2024
).
9.
S.
Jiménez-Gambín
,
N.
Jiménez
,
A. N.
Pouliopoulos
,
J. M.
Benlloch
,
E. E.
Konofagou
, and
F.
Camarena
, “
Acoustic holograms for bilateral blood-brain barrier opening in a mouse model
,”
IEEE Trans. Biomed. Eng.
69
,
1359
1368
(
2022
).
10.
S.
Bae
,
K.
Liu
,
A. N.
Pouliopoulos
,
R.
Ji
, and
E. E.
Konofagou
, “
Real-time passive acoustic mapping with enhanced spatial resolution in neuronavigation-guided focused ultrasound for blood-brain barrier opening
,”
IEEE Trans. Biomed. Eng.
70
,
2874
2885
(
2023
).
11.
J.
Rufo
,
F.
Cai
,
J.
Friend
,
M.
Wiklund
, and
T. J.
Huang
, “
Acoustofluidics for biomedical applications
,”
Nat. Rev. Methods Primers
2
,
30
(
2022
).
12.
C.
Wang
,
X.
Chen
,
L.
Wang
,
M.
Makihata
,
H.-C.
Liu
,
T.
Zhou
, and
X.
Zhao
, “
Bioadhesive ultrasound for long-term continuous imaging of diverse organs
,”
Science
377
,
517
523
(
2022
).
13.
Y.
Zhang
,
T.
Jin
,
Y.
Deng
,
Z.
Zhao
,
R.
Wang
,
Q.
He
,
J.
Luo
,
J.
Li
,
K.
Du
,
T.
Wu
et al, “
A low-voltage-driven MEMS ultrasonic phased-array transducer for fast 3D volumetric imaging
,”
Microsyst. Nanoeng.
10
,
128
(
2024
).
14.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
, “
Holograms for acoustics
,”
Nature
537
,
518
522
(
2016
).
15.
J.
Ling
,
Y.-Q.
Chen
,
Y.
Chen
,
D.-Y.
Wang
,
Y.-F.
Zhao
,
Y.
Pang
,
Y.
Yang
, and
T.-L.
Ren
, “
Design and characterization of high-density ultrasonic transducer array
,”
IEEE Sens. J.
18
,
2285
2290
(
2018
).
16.
A.
Marzo
and
B. W.
Drinkwater
, “
Holographic acoustic tweezers
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
84
89
(
2019
).
17.
T.
Fushimi
,
K.
Yamamoto
, and
Y.
Ochiai
, “
Acoustic hologram optimisation using automatic differentiation
,”
Sci. Rep.
11
,
12678
(
2021
).
18.
M. H.
Lee
,
H. M.
Lew
,
S.
Youn
,
T.
Kim
, and
J. Y.
Hwang
, “
Deep learning-based framework for fast and accurate acoustic hologram generation
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
69
,
3353
3366
(
2022
).
19.
A. W.
Lohmann
,
R. G.
Dorsch
,
D.
Mendlovic
,
Z.
Zalevsky
, and
C.
Ferreira
, “
Space–bandwidth product of optical signals and systems
,”
J. Opt. Soc. Am. A
13
,
470
473
(
1996
).
20.
M. A.
Neifeld
, “
Information, resolution, and space–bandwidth product
,”
Opt. Lett.
23
,
1477
1479
(
1998
).
21.
J. W.
Goodman
,
Introduction to Fourier Optics
(
Roberts and Company Publishers
,
2005
).
22.
L.
Xu
,
X.
Peng
,
Z.
Guo
,
J.
Miao
, and
A.
Asundi
, “
Imaging analysis of digital holography
,”
Opt. Express
13
,
2444
2452
(
2005
).
23.
B.
Ma
,
C.
Huang
,
S.
Hou
,
H.
Zhang
,
M.
Liu
, and
H.
Yan
, “
Imaging process matched neural network for complex wavefront retrieval with a higher space–bandwidth product
,”
Opt. Lett.
48
,
5399
5402
(
2023
).
24.
M.
Baudoin
,
J.-L.
Thomas
,
R. A.
Sahely
,
J.-C.
Gerbedoen
,
Z.
Gong
,
A.
Sivery
,
O. B.
Matar
,
N.
Smagin
,
P.
Favreau
, and
A.
Vlandas
, “
Spatially selective manipulation of cells with single-beam acoustical tweezers
,”
Nat. Commun.
11
,
4244
(
2020
).
25.
J.
Durrer
,
P.
Agrawal
,
A.
Ozgul
,
S. C.
Neuhauss
,
N.
Nama
, and
D.
Ahmed
, “
A robot-assisted acoustofluidic end effector
,”
Nat. Commun.
13
,
6370
(
2022
).
26.
I.
Ezcurdia
,
R.
Morales
,
M. A.
Andrade
, and
A.
Marzo
, “
Leviprint: Contactless fabrication using full acoustic trapping of elongated parts
,” in
ACM SIGGRAPH 2022 Conference Proceedings
(
ACM
,
2022
) pp.
1
9
.
27.
P.
Cabras
,
P.
Auloge
,
F.
Bing
,
P. P.
Rao
,
S.
Hoarau
,
E.
Dumont
,
A.
Durand
,
B.
Maurin
,
B.
Wach
,
L.
Cuvillon
et al, “
A new versatile MR-guided high-intensity focused ultrasound (HIFU) device for the treatment of musculoskeletal tumors
,”
Sci. Rep.
12
,
9095
(
2022
).
28.
Z.
Ma
,
K.
Melde
,
A. G.
Athanassiadis
,
M.
Schau
,
H.
Richter
,
T.
Qiu
, and
P.
Fischer
, “
Spatial ultrasound modulation by digitally controlling microbubble arrays
,”
Nat. Commun.
11
,
4537
(
2020b
).
29.
D. M.
Plasencia
,
R.
Hirayama
,
R.
Montano-Murillo
, and
S.
Subramanian
, “
GS-PAT: High-speed multi-point sound-fields for phased arrays of transducers
,”
ACM Trans. Graph.
39
,
138.1
138.12
(
2020
).
30.
D.
Schein
,
T.
Grutman
, and
T.
Ilovitsh
, “
Deep learning-based ultrasound beam shaping for spatiotemporal acoustic holograms generation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
70
,
551
561
(
2023
).
31.
S.
Jiménez-Gambín
,
N.
Jimenez
,
J. M.
Benlloch
, and
F.
Camarena
, “
Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms
,”
Sci. Rep.
9
,
20104
(
2019
).
32.
J.
Zhang
,
Y.
Tian
,
Y.
Cheng
, and
X.
Liu
, “
Acoustic holography using composite metasurfaces
,”
Appl. Phys. Lett.
116
,
030501
(
2020
).
33.
M.
Xu
,
W. S.
Harley
,
Z.
Ma
,
P. V.
Lee
, and
D. J.
Collins
, “
Sound-speed modifying acoustic metasurfaces for acoustic holography
,”
Adv. Mater.
35
,
e2208002
(
2023
).
34.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
35.
Y.
Yang
,
T.
Ma
,
Q.
Zhang
,
J.
Huang
,
Q.
Hu
,
Y.
Li
,
C.
Wang
, and
H.
Zheng
, “
3d acoustic manipulation of living cells and organisms based on 2d array
,”
IEEE Trans. Biomed. Eng.
69
,
2342
2352
(
2022
).
36.
W.
Chen
,
J.
Liu
,
S.
Lei
,
Z.
Yang
,
Q.
Zhang
,
Y.
Li
,
J.
Huang
,
Y.
Dong
,
H.
Zheng
,
D.
Wu
, and
T.
Ma
, “
Flexible ultrasound transducer with embedded optical shape sensing fiber for biomedical imaging applications
,”
IEEE Trans. Biomed. Eng.
70
,
2841
2851
(
2023
).
37.
H.
O'Neil
, “
Theory of focusing radiators
,”
J. Acoust. Soc. Am.
21
,
516
526
(
1949
).
38.
M. A.
Averkiou
and
M. F.
Hamilton
, “
Nonlinear distortion of short pulses radiated by plane and focused circular pistons
,”
J. Acoust. Soc. Am.
102
,
2539
2548
(
1997
).
39.
J.
Bin
,
W. S.
Oates
, and
K.
Taira
, “
Thermoacoustic modeling and uncertainty analysis of two-dimensional conductive membranes
,”
J. Appl. Phys.
117
,
064506
(
2015
).
40.
K.
Matsushima
and
T.
Shimobaba
, “
Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields
,”
Opt. Express
17
,
19662
19673
(
2009
).
41.
O.
Ronneberger
,
P.
Fischer
,
T.
Brox
et al, “
U-net: Convolutional networks for biomedical image segmentation
,” in
MICCAI 2015, Part III
, edited by
N.
Navab
et al (
Springer International Publishing
,
Switzerland
,
2015
), Vol.
9351
, pp.
234
241
.
42.
C.
Zhong
,
Q.
Lu
,
T.
Li
,
H.
Su
, and
S.
Liu
, “
Real-time acoustic holography with physics-reinforced contrastive learning for acoustic field reconstruction
,”
J. Appl. Phys.
135
,
014902
(
2024
).
You do not currently have access to this content.