We demonstrate a 100 mm-diameter, 2.4  μm-thick multilevel diffractive lens (MDL) with a 200 mm focal length, optimized for the 400 to 800 nm wavelength range—specifications that are difficult to achieve even with complex multi-element refractive systems. Created using an inverse-design approach and grayscale lithography, the MDL achieves achromatic focusing, confirmed through hyperspectral point-spread function (PSF) characterization. Imaging experiments resolved spatial frequencies up to 181 lp/mm and demonstrated the MDL's capability in capturing high-quality, full-color images of the moon, sun, and distant terrestrial scenes. Color-enhanced lunar images revealed key geological features, while solar imaging identified visible sunspots. Additionally, the MDL was integrated with a refractive achromatic lens to form a hybrid telescope, significantly reducing weight for airborne and space-based imaging applications. Simulations and experimental results reported here underscore the potential of large-area achromatic flat lenses as lightweight alternatives to conventional refractive systems for astrophotography and other long-range imaging tasks.

1.
D.
Apai
,
T. D.
Milster
,
D. W.
Kim
,
A.
Bixel
,
G.
Schneider
,
B. V.
Rackham
,
R.
Liang
, and
J.
Arenberg
, “
Nautilus Observatory: A space telescope array based on very large aperture ultralight diffractive optical elements
,”
Proc. SPIE
11116
,
1111608
(
2019
).
2.
A. V.
Nikonorov
,
M. V.
Petrov
,
S. A.
Bibikov
,
P. Y.
Yakimov
,
V. V.
Kutikova
,
Y. V.
Yuzifovich
,
A. A.
Morozov
,
R. V.
Skidanov
, and
N. L.
Kazanskiy
, “
Toward ultralightweight remote sensing with harmonic lenses and convolutional neural networks
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
11
,
3338
3348
(
2018
).
3.
H. A.
MacEwen
and
J. B.
Breckinridge
, “
Large diffractive/refractive apertures for space and airborne telescopes
,”
Proc. SPIE.
8739
,
873904
(
2013
).
4.
S. V.
Berdyugina
,
J. R.
Kuhn
,
M.
Langlois
,
G.
Moretto
,
J.
Krissansen-Totton
,
D.
Catling
,
J. L.
Grenfell
,
T.
Santl-Temkiv
,
K.
Finster
,
J.
Tarter
,
F.
Marchis
,
H.
Hargitai
, and
D.
Apai
, “
The Exo-Life Finder (ELF) telescope: New strategies for direct detection of exoplanet biosignatures and technosignatures
,”
Proc. SPIE
10700
,
107004I
(
2018
).
5.
T.
Stone
and
N.
George
, “
Hybrid diffractive-refractive lenses and achromats
,”
Appl. Opt.
27
,
2960
2971
(
1988
).
6.
D. W.
Sweeney
and
G. E.
Sommargren
, “
Harmonic diffractive lenses
,”
Appl. Opt.
34
,
2469
2475
(
1995
).
7.
R.
Menon
and
N.
Brimhall
, “
Perspectives on imaging with diffractive flat optics
,”
ACS Photonics
10
,
1046
1052
(
2023
).
8.
M.
Meem
,
A.
Majumder
,
S.
Banerji
,
J. C.
Garcia
,
O. B.
Kigner
,
P. W. C.
Hon
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens
,”
Opt. Express
29
,
20715
20723
(
2021
).
9.
L. L.
Doskolovich
,
R. V.
Skidanov
,
E. A.
Bezus
,
S. V.
Ganchevskaya
,
D. A.
Bykov
, and
N. L.
Kazanskiy
, “
Design of diffractive lenses operating at several wavelengths
,”
Opt. Express
28
,
11705
11720
(
2020
).
10.
Z.
Wang
,
Y.
Kim
, and
T. D.
Milster
, “
High-harmonic diffractive lens color compensation
,”
Appl. Opt.
60
,
D73
D82
(
2021
).
11.
A.
Ndao
,
L.
Hsu
,
J.
Ha
,
J.-H.
Park
,
C.
Chang-Hasnain
, and
B.
Kanté
, “
Octave bandwidth photonic fishnet-achromatic-metalens
,”
Nat. Commun.
11
,
3205
(
2020
).
12.
J.
Li
,
Y.
Wang
,
S.
Liu
,
T.
Xu
,
K.
Wei
,
Y.
Zhang
, and
H.
Cui
, “
Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging
,”
Opt. Express
30
,
28882
28891
(
2022
).
13.
L.
Zhang
,
S.
Chang
,
X.
Chen
,
Y.
Ding
,
M. T.
Rahman
,
Y.
Duan
,
M.
Stephen
, and
X.
Ni
, “
High-efficiency, 80 mm aperture metalens telescope
,”
Nano Lett.
23
,
51
57
(
2023
).
14.
J.-S.
Park
,
S. W. D.
Lim
,
A.
Amirzhan
,
H.
Kang
,
K.
Karrfalt
,
D.
Kim
,
J.
Leger
,
A.
Urbas
,
M.
Ossiander
,
Z.
Li
et al, “
All-glass 100 mm diameter visible metalens for imaging the cosmos
,”
ACS Nano
18
,
3187
3198
(
2024
).
15.
R.
Menon
and
B.
Sensale-Rodriguez
, “
Inconsistencies of metalens performance and comparison with conventional diffractive optics
,”
Nat. Photonics
17
,
923
924
(
2023
).
16.
L.
d'Auria
,
J.
Huignard
,
A.
Roy
, and
E.
Spitz
, “
Photolithographic fabrication of thin film lenses
,”
Opt. Commun.
5
,
232
235
(
1972
).
17.
S.
Banerji
,
M.
Meem
,
A.
Majumder
,
F. G.
Vasquez
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Imaging with flat optics: Metalenses or diffractive lenses?
,”
Optica
6
,
805
810
(
2019
).
18.
K.
Vanmol
,
A. A.
Abdul Nazar
,
H.
Thienpont
,
F.
Ferranti
, and
J.
Van Erps
, “
Fabrication of multilevel metalenses using multiphoton lithography: From design to evaluation
,”
Opt. Express
32
,
10190
10203
(
2024
).
19.
W.
Wang
,
U.
Hübner
,
T.
Chen
,
A.
Gärtner
,
J.
Köbel
,
F.
Jahn
,
H.
Schneidwind
,
A.
Dellith
,
J.
Dellith
,
T.
Wieduwilt
et al, “
Grayscale electron beam lithography direct patterned antimony sulfide
,” arXiv:2401.13427 (
2024
).
20.
R. A.
Hyde
,
S. N.
Dixit
,
A. H.
Weisberg
, and
M. C.
Rushford
, “
Eyeglass: A very large aperture diffractive space telescope
,”
Proc. SPIE
4849
,
28
39
(
2002
).
21.
H.
Zhang
,
H.
Liu
,
W.
Xu
,
A.
Lizana
,
X.
Wang
, and
Z.
Lu
, “
Error analysis of large-diameter subaperture stitching Fresnel diffractive elements
,”
Appl. Opt.
56
,
7672
7678
(
2017
).
22.
L.
Koechlin
,
J.-P.
Rivet
,
P.
Deba
,
D.
Serre
,
T.
Raksasataya
,
R.
Gili
, and
J.
David
, “
First high dynamic range and high resolution images of the sky obtained with a diffractive Fresnel array telescope
,”
Exp. Astron.
33
,
129
140
(
2012
).
23.
H.
Zhang
,
H.
Liu
,
W.
Xu
, and
Z.
Lu
, “
Large aperture diffractive optical telescope: A review
,”
Opt. Laser Technol.
130
,
106356
(
2020
).
24.
J. T.
Early
,
R.
Hyde
, and
R. L.
Baron
, “
Twenty-meter space telescope based on diffractive Fresnel lens
,”
Proc. SPIE
5166
,
148
156
(
2004
).
25.
J. W.
Goodman
,
Statistical Optics
(
Wiley-Interscience
,
New York
,
1985
), Vol.
1
, p.
567
.
26.
N. R. V.
Zandt
,
J. E.
McCrae
,
M. F.
Spencer
,
M. J.
Steinbock
,
M. W.
Hyde
, and
S. T.
Fiorino
, “
Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects
,”
Appl. Opt.
57
,
4090
4102
(
2018
).
27.
J. W.
Goodman
,
Introduction to Fourier Optics
, 3rd ed. (
Roberts & Co. Publishers
,
Englewood, CO
,
2005
), Vol.
1
.
28.
NASA
, see https://airandspace.si.edu/multimedia-gallery/nasa-pia00132640jpg for “
False Color Photograph taken by Galileo's Solid-State Imaging System During Passage Through the Earth-Moon System on December 8, 1992
.” (Retrieved September 28,
2024
).
29.
T. M.
Hare
,
R. K.
Hayward
,
J. S.
Blue
,
B. A.
Archinal
,
M. S.
Robinson
,
E. J.
Speyerer
,
R. V.
Wagner
,
D. E.
Smith
,
M. T.
Zuber
,
G. A.
Neumann
et al,
Image Mosaic and Topographic Map of the Moon
(
US Geological Survey Scientific Investigations Map
,
2015
), Vol.
3316
.
30.
M.
Meem
,
A.
Majumder
, and
R.
Menon
, “
Full-color video and still imaging using two flat lenses
,”
Opt. Express
26
,
26866
26871
(
2018
).
31.
T. M.
Hayward
,
S. N.
Qadri
,
F.
Santiago
,
C.
Cheung
,
M.
Christophersen
,
N.
Brimhall
, and
R.
Menon
, “
Imaging with an inverse-designed 50 mm-diameter f/1 MWIR flat lens with enhanced field of view and depth of focus
,”
Opt. Lett.
49
,
5015
5018
(
2024
).
32.
J.
Engelberg
and
U.
Levy
, “
Standardizing flat lens characterization
,”
Nat. Photonics
16
,
171
173
(
2022
).
33.
J.
Engelberg
and
U.
Levy
, “
Achromatic flat lens performance limits
,”
Optica
8
,
834
845
(
2021
).
34.
D. A.
Buralli
and
G. M.
Morris
, “
Effects of diffraction efficiency on the modulation transfer function of diffractive lenses
,”
Appl. Opt.
31
,
4389
4396
(
1992
).
35.
F.
Presutti
and
F.
Monticone
, “
Focusing on bandwidth: Achromatic metalens limits
,”
Optica
7
,
624
631
(
2020
).
36.
T. N.
Academies
,
Pathways to Discovery in Astronomy and Astrophysics for the 2020s
(
The National Academies Press
,
Washington, DC
,
2021
).
You do not currently have access to this content.