Photonic crystal nanocavities with high quality (Q) factors find extensive application in silicon (Si)-integrated photonics owing to their highly selective wavelength filtering, optical buffering, and enhanced nonlinear optical effects in the telecommunication band. High-Q Si photonic nanocavities with asymmetric claddings offer mechanical stability, high functionalities from heterogeneous materials, and vertical integration of optoelectronic devices. However, achieving a high Q factor in an asymmetric structure remains challenging because of the TE–TM coupling loss in the Si slab. To suppress the TE–TM coupling, we designed a high-Q two-dimensional (2D) Si photonic crystal slot cavity by significantly reducing the electric field components in the slab, leveraging a large dielectric discontinuity between Si and the low-index slot. We fabricated 2D Si photonic crystal slot nanocavities with asymmetric claddings consisting of a lower cladding of thermal oxide (nlc = nBOX = 1.45) and an upper cladding of infiltrated spin-on glass (nuc = nSOG = 1.3). The Q factor of this slot cavity is as high as 6.32 × 105, which is the highest Q value ever recorded among nanocavities with asymmetric claddings. Our results are useful for heterogeneous integration of Si photonic crystal nanocavities with various functionalities such as active and nonlinear optical materials, which are unattainable in conventional Si photonics.

1.
L. W.
Luo
,
N.
Ophir
,
C. P.
Chen
,
L. H.
Gabrielli
,
C. B.
Poitras
,
K.
Bergmen
, and
M.
Lipson
, “
WDM-compatible mode-division multiplexing
,”
Nat. Commun.
5
,
3069
(
2014
).
2.
D.
Perez
,
I.
Gasulla
,
L.
Crudgington
,
D. J.
Thomson
,
A. Z.
Khokhar
,
K.
Li
,
W.
Cao
,
G. Z.
Mashanovic
, and
J.
Capmany
, “
Multipurpose silicon photonics signal processor
,”
Nat. Commun.
8
,
636
(
2017
).
3.
K.
Li
,
S.
Liu
,
D. J.
Thomson
,
W.
Zhang
,
X.
Yan
,
F.
Meng
,
C. G.
Litteljohns
,
H.
Du
,
M.
Banakar
,
M.
Ebert
,
W.
Cao
,
D.
Tran
,
B.
Chen
,
A.
Shakoor
,
P.
Petroboulos
, and
G. T.
Reed
, “
Electronic-photonic convergence for silicon photonics transmitters beyond 100 Gbps on-off keying
,”
Optica
7
,
1514
1516
(
2020
).
4.
A.
Rizzo
,
A.
Novick
,
V.
Gopal
,
B.
Kim
,
X.
Ji
,
S.
Daudlin
,
Y.
Okawachi
,
Q.
Cheng
,
M.
Lipson
,
A. L.
Gaeta
, and
K.
Bergman
, “
Massively scalabale Kerr comb-driven silicon photonic link
,”
Nat. Photonics
17
,
781
790
(
2023
).
5.
T.
Asano
,
Y.
Ochi
,
Y.
Takahashi
,
K.
Kishimoto
, and
S.
Noda
, “
Photonic crystal nanocavity with Q factor exceeding eleven million
,”
Opt. Express
25
,
1769
1777
(
2017
).
6.
M. V.
Rybin
,
K. L.
Koshelev
,
Z. F.
Sadrieva
,
K. B.
Samusev
,
A. A.
Bogdanov
,
M. F.
Limonov
, and
Y. S.
Kivshar
, “
Supercavity modes in subwavelength dielectric resonator
,”
Phys. Rev. Lett.
119
,
243901
(
2017
).
7.
M.
Albrechtsen
,
B. V.
Lahijani
,
R. E.
Christiansen
,
V. T.
Hoang Nguyen
,
L. N.
Casses
,
S. E.
Hansen
,
N.
Stenger
,
O.
Sigmund
,
H.
Jansen
,
J.
Mork
, and
S.
Stobbe
, “
Nanometer-scale photon confinement in topology-optimized dielectric cavities
,”
Nat. Commun.
13
,
6281
(
2022
).
8.
A. N.
Babar
,
T. A. S.
Weis
,
K.
Tsoukalas
,
S.
Kadkhodazadeh
,
G.
Arregui
,
B. V.
Lahijani
, and
S.
Stobbe
, “
Self-assembled photonic cavities with atomic-scale confinement
,”
Nature
624
,
57
63
(
2023
).
9.
Y.
Ooka
,
T.
Tetsumoto
,
N. A. B.
Daud
, and
T.
Tanabe
, “
Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography
,”
Opt. Express
25
,
1521
1528
(
2017
).
10.
P.
Yu
,
H.
Qiu
,
T.
Dai
,
R.
Cheng
,
B.
Lian
,
W.
Li
,
H.
Yu
, and
J.
Yang
, “
Ultracompact channel add-drop filter based on single multimode nanobeam photonic crystal cavity
,”
J. Lightwave Technol.
39
,
162
166
(
2021
).
11.
D.
Yang
,
S.
Kita
,
F.
Liang
,
C.
Wang
,
H.
Tian
,
Y.
Ji
,
M.
Loncar
, and
Q.
Quan
, “
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
,”
Appl. Phys. Lett.
105
,
063118
(
2014
).
12.
J. E.
Baker
,
R.
Sriram
, and
B. L.
Miller
, “
Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: Towards integrated photonic virus detectors
,”
Lab Chip.
17
,
1570
1577
(
2017
).
13.
Y.
Sato
,
Y.
Tanaka
,
J.
Upham
,
Y.
Takahashi
,
T.
Asano
, and
S.
Noda
, “
Strong coupling between distant photonic nanocavities and its dynamic control
,”
Nat. Photonics
6
,
56
61
(
2012
).
14.
V.
Saggio
,
C.
Errand-Herranz
,
S.
Gyger
,
C.
Panuski
,
M.
Prabhu
,
L. D.
Santis
,
I.
Christen
,
M.
Colangelo
, and
D.
Englund
, “
Cavity-enhanced single artificial atoms in silicon
,”
Nat. Commun.
15
,
5296
(
2024
).
15.
M.
Galli
,
D.
Gerace
,
K.
Welna
,
T. F.
Krauss
,
L.
O'Faolain
,
G.
Guizetti
, and
L. C.
Andreani
, “
Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities
,”
Opt. Express
18
,
26613
26624
(
2010
).
16.
Y.
Takahashi
,
Y.
Inui
,
M.
Chihara
,
T.
Asano
,
R.
Terawaki
, and
S.
Noda
, “
A micrometre-scale Raman silicon laser with a microwatt threshold
,”
Nature
498
,
470
474
(
2013
).
17.
E.
Kuramochi
,
K.
Nozaki
,
A.
Shinya
,
K.
Takeda
,
T.
Sato
,
S.
Matsuo
,
H.
Taniyama
,
H.
Sumikura
, and
M.
Notomi
, “
Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip
,”
Nat. Photonics
8
,
474
481
(
2014
).
18.
K.
Nozaki
,
E.
Kuramochi
,
A.
Shinya
, and
M.
Notomi
, “
25-Channel all-optical switches realized by integrating silicon photonic crystal nanocavities
,”
Opt. Express
22
,
14263
14274
(
2014
).
19.
M.
Nakadai
,
T.
Asano
, and
S.
Noda
, “
Electrically controlled on-demand photon transfer between high-Q photonic crystal nanocavities on a silicon chip
,”
Nat. Photonics
16
,
113
118
(
2022
).
20.
R.
Mitsuhashi
,
B. S.
Song
,
K.
Inoue
,
T.
Asano
, and
S.
Noda
, “
Design and fabrication of a coupled high-Q photonic nanocavity system with large coupling coefficients
,”
Opt. Express
32
,
10630
10647
(
2024
).
21.
Y.
Tanaka
,
T.
Asano
,
R.
Hatsuta
, and
S.
Noda
, “
Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding
,”
Appl. Phys. Lett.
88
,
011112
(
2006
).
22.
Z.
Han
,
X.
Checoury
,
L. D.
Haret
, and
P.
Boucaud
, “
High quality factor in a two-dimensional photonic crystal cavity on silicon-on-insulator
,”
Opt. Lett.
36
,
1749
1751
(
2011
).
23.
S. W.
Jeon
,
J. K.
Han
,
B. S.
Song
, and
S.
Noda
, “
Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity
,”
Opt. Express
18
,
19361
19366
(
2010
).
24.
B. S.
Song
,
S. W.
Jeon
, and
S.
Noda
, “
Symmetrically glass-clad photonic crystal nanocavities with ultrahigh quality factors
,”
Opt. Lett.
36
,
91
93
(
2011
).
25.
D.
Dodane
,
J.
Bourderionnet
,
S.
Combrie
, and
A. D.
Rossi
, “
Fully embedded photonic crystal with Q=0.6 million fabricated within a full-process CMOS multiproject wafer
,”
Opt. Express
26
,
20868
20877
(
2018
).
26.
R.
Kawata
,
A.
Fujita
,
N.
Pholsen
,
S.
Iwamoto
, and
Y.
Ota
, “
High-Q two-dimensional photonic crystal nanocavity on glass with an upper glass thin film
,”
Opt. Lett.
49
,
2345
2348
(
2024
).
27.
J. H.
Wulbern
,
J.
Hampe
,
A.
Petrov
,
M.
Eich
,
J.
Luo
,
A. K. Y.
Jen
,
A. D.
Falco
,
T. F.
Krauss
, and
J.
Buns
, “
Electro-optic modulation in slotted resonant photonic crystal heterostructures
,”
Appl. Phys. Lett.
94
,
241107
(
2009
).
28.
Y.
Akahane
,
T.
Asano
,
B. S.
Song
, and
S.
Noda
, “
Fine-tuned high-Q photonic-crystal nanocavity
,”
Opt. Express
13
,
1202
(
2005
).
29.
V. R.
Almeida
,
Q.
Xu
,
C. A.
Barrios
, and
M.
Lipson
, “
Guiding and confining light in void nanostructure
,”
Opt. Lett.
29
,
1209
1211
(
2004
).
30.
P. B.
Deotare
,
M. W.
McCutcheon
,
I. W.
Frang
,
M.
Khan
, and
M.
Loncar
, “
High quality factor photonic crystal nanobeam cavities
,”
Appl. Phys. Lett.
94
,
121106
(
2009
).
31.
E.
Kuramochi
,
H.
Taniyama
,
T.
Tanabe
,
K.
Kawasaki
,
Y. G.
Roh
, and
M.
Notomi
, “
Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barrier on SiO2 claddings and on air claddings
,”
Opt. Express
18
,
15859
15869
(
2010
).
32.
J.
Zhan
,
Z.
Jafari
,
S.
Veileux
,
M.
Dagenais
, and
I. D.
Leon
, “
High-Q nanobeam cavities on a silicon nitride platform enabled by slow light
,”
APL Photonics
5
,
066101
(
2010
).
33.
S.
Iadanza
,
J. H. M.
Castro
,
T.
Oliveira
,
S. M.
Butler
,
A.
Tedesco
,
G.
Giannino
,
B.
Lendl
,
M.
Grande
, and
L.
O'Faolain
, “
High-Q asymmetrically cladded silicon nitride 1D photonic crystals cavities and hybrid external cavity lasers for sensing in air and liquids
,”
Nanophotonics
11
,
4183
4196
(
2022
).
34.
T.
Asano
,
B. S.
Song
, and
S.
Noda
, “
Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities
,”
Opt. Express
14
,
1996
2002
(
2006
).
35.
H.
Hagino
,
Y.
Takahashi
,
Y.
Tanaka
,
T.
Asano
, and
S.
Noda
, “
Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities
,”
Phys. Rev. B
79
,
085112
(
2009
).
36.
Y.
Yamaguchi
,
S. W.
Jeon
,
B. S.
Song
,
Y.
Tanaka
,
T.
Asano
, and
S.
Noda
, “
Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities
,”
J. Opt. Soc. Am. B
32
,
1792
1796
(
2015
).
You do not currently have access to this content.