Taking advantage of optoelectronic hybrid neural networks, we propose a metasurface-single-pixel hybrid neural network for object recognition. It employs only eight illumination patterns trained by the digital neural network to convolve the object from two-dimensional images into only eight intensity values measured by a single-pixel detector, achieving a 93.8% accuracy rate in handwritten digit recognition. Our work therefore paves an image-free way for metasurface-based object recognition using only a single-pixel detector, which exhibits its powerful information compression and accurate extraction capabilities coupled with a compact structural design.

1.
S.
Noy
and
W.
Zhang
, “
Experimental evidence on the productivity effects of generative artificial intelligence
,”
Science
381
,
187
(
2023
).
2.
T.
Wang
,
S.-Y.
Ma
,
L. G.
Wright
et al, “
An optical neural network using less than 1 photon per multiplication
,”
Nat. Commun.
13
,
123
(
2022
).
3.
Z.
Zhang
,
F.
Feng
,
J.
Gan
et al, “
Space-time projection enabled ultrafast all-optical diffractive neural network
,”
Laser Photonics Rev.
18
,
2301367
(
2024
).
4.
G.
Qu
,
G.
Cai
,
X.
Sha
et al, “
All-dielectric metasurface empowered optical-electronic hybrid neural networks
,”
Laser Photonics Rev.
16
,
2100732
(
2022
).
5.
J.
Sun
,
Y.
Choi
,
Y. J.
Choi
et al, “
2D-organic hybrid heterostructures for optoelectronic applications
,”
Adv. Mater.
31
,
1803831
(
2019
).
6.
W.
Shi
,
Z.
Huang
,
H.
Huang
et al, “
LOEN: Lensless optoelectronic neural network empowered machine vision
,”
Light
11
,
121
(
2022
).
7.
X.
Xu
,
M.
Tan
,
B.
Corcoran
et al, “
11 TOPS photonic convolutional accelerator for optical neural networks
,”
Nature
589
,
44
(
2021
).
8.
G.
Barbastathis
,
A.
Ozcan
, and
G.
Situ
, “
On the use of deep learning for computational imaging
,”
Optica
6
,
921
(
2019
).
9.
K.
Yadav
,
S.
Bidnyk
, and
A.
Balakrishnan
, “
Artificial intelligence and machine learning in optics: Tutorial
,”
J. Opt. Soc. Am. B
41
,
1739
(
2024
).
10.
T. M.
Cover
, “
Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
,”
IEEE Trans. Electron. Comput.
EC-14
,
326
(
1965
).
11.
J.
Nickolls
and
W. J.
Dally
, “
The GPU computing era
,”
IEEE Micro
30
,
56
(
2010
).
12.
S.
Zhang
, “
Intelligent metasurfaces: Digitalized, programmable, and intelligent platforms
,”
Light
11
,
242
(
2022
).
13.
Z.
Wang
,
G.
Hu
,
X.
Wang
et al, “
Single-layer spatial analog meta-processor for imaging processing
,”
Nat. Commun.
13
,
2188
(
2022
).
14.
C.
Qian
,
Z.
Wang
,
H.
Qian
et al, “
Dynamic recognition and mirage using neuro-metamaterials
,”
Nat. Commun.
13
,
2694
(
2022
).
15.
P.
del Hougne
,
M. F.
Imani
,
A. V.
Diebold
et al, “
Learned integrated sensing pipeline: Reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network
,”
Adv. Sci.
7
,
1901913
(
2020
).
16.
C.
Wu
,
H.
Yu
,
S.
Lee
et al, “
Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network
,”
Nat. Commun.
12
,
96
(
2021
).
17.
X.
Luo
,
Y.
Hu
,
X.
Ou
et al, “
Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible
,”
Light
11
,
158
(
2022
).
18.
J.
Feldmann
,
N.
Youngblood
,
C. D.
Wright
et al, “
Parallel convolutional processing using an integrated photonic tensor core
,”
Nature
589
,
52
(
2021
).
19.
R.
Hamerly
,
L.
Bernstein
,
A.
Sludds
et al, “
Large-scale optical neural networks based on photoelectric multiplication
,”
Phys. Rev. X
9
,
021032
(
2019
).
20.
J.
Feldmann
,
N.
Youngblood
,
C. D.
Wright
et al, “
All-optical spiking neurosynaptic networks with self-learning capabilities
,”
Nature
569
,
208
(
2019
).
21.
H.
Zhang
,
M.
Gu
,
X. D.
Jiang
et al, “
An optical neural chip for implementing complex-valued neural network
,”
Nat. Commun.
12
,
457
(
2021
).
22.
J.
Fang
,
H.
Lin
,
X.
Chen
et al, “
A hybrid network of CNN and transformer for lightweight image super-resolution
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
2022
.
23.
L.
Li
,
Y.
Shuang
,
Q.
Ma
et al, “
Intelligent metasurface imager and recognizer
,”
Light
8
,
97
(
2019
).
24.
M. K.
Chen
,
X.
Liu
,
Y.
Sun
et al, “
Artificial intelligence in meta-optics
,”
Chem. Rev.
122
,
15356
(
2022
).
25.
J.
Jahns
and
A.
Huang
, “
Planar integration of free-space optical components
,”
Appl. Opt.
28
,
1602
(
1989
).
26.
X.
Yuan
,
Y.
Wang
,
Z.
Xu
et al, “
Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning
,”
Nat. Commun.
14
,
7110
(
2023
).
27.
T.
Yan
,
J.
Wu
,
T.
Zhou
et al, “
Fourier-space diffractive deep neural network
,”
Phys. Rev. Lett.
123
,
023901
(
2019
).
28.
Y.
Luo
,
D.
Mengu
,
N. T.
Yardimci
et al, “
Design of task-specific optical systems using broadband diffractive neural networks
,”
Light
8
,
112
(
2019
).
29.
X.
Lin
,
Y.
Rivenson
,
N. T.
Yardimci
et al, “
All-optical machine learning using diffractive deep neural networks
,”
Science
361
,
1004
(
2018
).
30.
J. H.
Song
,
J.
van de Groep
,
S. J.
Kim
et al, “
Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking
,”
Nat. Nanotechnol.
16
,
1224
(
2021
).
31.
J.
Zhou
,
H.
Qian
,
C.-F.
Chen
et al, “
Optical edge detection based on high-efficiency dielectric metasurface
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
11137
(
2019
).
32.
J.
Xiong
,
Z.-H.
Zhang
,
Z.
Li
et al, “
Perovskite single-pixel detector for dual-color metasurface imaging recognition in complex environment
,”
Light
12
,
286
(
2023
).
33.
Q.
Yang
,
H.
Xiong
,
J. H.
Deng
et al, “
Polarization-insensitive composite gradient-index metasurface array for microwave power reception
,”
Appl. Phys. Lett.
122
,
253901
(
2023
).
34.
H.
Ren
,
X.
Fang
,
J.
Jang
et al, “
Complex-amplitude metasurface-based orbital angular momentum holography in momentum space
,”
Nat. Nanotechnol.
15
,
948
(
2020
).
35.
Y. F.
Yu
,
A. Y.
Zhu
,
R.
Paniagua‐Domínguez
et al, “
High-transmission dielectric metasurface with 2π phase control at visible wavelengths
,”
Laser Photonics Rev.
9
,
412
(
2015
).
36.
M. P.
Edgar
,
G. M.
Gibson
, and
M. J.
Padgett
, “
Principles and prospects for single-pixel imaging
,”
Nat. Photonics
13
,
13
(
2019
).
37.
E.
Tajahuerce
,
V.
Durán
,
P.
Clemente
et al, “
Image transmission through dynamic scattering media by single-pixel photodetection
,”
Opt. Express
22
,
16945
(
2014
).
38.
J.
Kim
,
T.
Jeong
,
S.-Y.
Lee
et al, “
Heralded single-pixel imaging with high loss-resistance and noise-robustness
,”
Appl. Phys. Lett.
119
,
244002
(
2021
).
39.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
et al, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
,
2278
2324
(
1998
).
40.
S.
Zhang
,
P.
Xiao
,
X.
Hong
et al, “
All-in-one hardware devices with event-based vision sensor arrays for image sensing, computing, and learning
,”
Adv. Funct. Mater.
33
,
2306173
(
2023
).
41.
Y.
Wang
,
Y.
Zhu
,
Y.
Li
et al, “
Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity
,”
Adv. Funct. Mater.
32
,
2107973
(
2022
).
42.
W.
Pei
,
Y.
Li
,
S.
Siuly
et al, “
A hybrid deep learning scheme for multi-channel sleep stage classification
,”
Comput. Mater. Continua
71
,
889
(
2022
).
43.
P.
Zheng
,
Q.
Dai
,
Z.
Li
et al, “
Metasurface-based key for computational imaging encryption
,”
Sci. Adv.
7
,
eabg0363
(
2021
).
44.
Y.
Peng
and
W.
Chen
, “
Deep learning-enhanced ghost imaging through dynamic and complex scattering media with supervised corrections of dynamic scaling factors
,”
Appl. Phys. Lett.
124
,
181104
(
2024
).
45.
S.
Zhu
,
E.
Guo
,
J.
Gu
et al, “
Imaging through unknown scattering media based on physics-informed learning
,”
Photonics Res.
9
,
B210
(
2021
).
46.
P.
Wang
,
K.
Guo
, and
Z.
Guo
, “
Single-pixel imaging through scattering media employing a circular polarization multiplexing metasurface
,”
Appl. Opt.
63
,
9029
(
2024
).
47.
Y.
Sun
,
J.
Shi
,
L.
Sun
et al, “
Image reconstruction through dynamic scattering media based on deep learning
,”
Opt. Express
27
,
16032
(
2019
).
48.
Z.
Zhang
,
X.
Li
,
S.
Zheng
et al, “
Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection
,”
Opt. Express
28
,
13269
(
2020
).
49.
C. F.
Higham
,
R.
Murray-Smith
,
M. J.
Padgett
et al, “
Deep learning for real-time single-pixel video
,”
Sci. Rep.
8
,
2369
(
2018
).
50.
V.-C.
Su
,
C. H.
Chu
,
G.
Sun
et al, “
Advances in optical metasurfaces: Fabrication and applications
,”
Opt. Express
26
,
13148
(
2018
).
51.
K.
Yi
,
D.
Liu
,
X.
Chen
et al, “
Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications
,”
Acc. Chem. Res.
54
,
1011
(
2021
).
52.
L.
Bernstein
,
A.
Sludds
,
C.
Panuski
et al, “
Single-shot optical neural network
,”
Sci. Adv.
9
,
eadg7904
(
2023
).
53.
C.
Liu
,
Q.
Ma
,
Z. J.
Luo
et al, “
A programmable diffractive deep neural network based on a digital-coding metasurface array
,”
Nat. Electron.
5
,
113
(
2022
).
54.
H.
Zheng
,
Q.
Liu
,
Y.
Zhou
et al, “
Meta-optic accelerators for object classifiers
,”
Sci. Adv.
8
,
eabo6410
(
2022
).
55.
H.
Zheng
,
Q.
Liu
,
I. I.
Kravchenko
et al, “
Multichannel meta-imagers for accelerating machine vision
,”
Nat. Nanotechnol.
19
,
471
(
2024
).
You do not currently have access to this content.