The quantum anomalous Hall effect (QAHE) in magnetic topological insulators offers great potential to revolutionize quantum electrical metrology by establishing primary resistance standards operating at zero external magnetic field and realizing a universal “quantum electrical metrology toolbox” that can perform quantum resistance, voltage, and current metrology in a single instrument. To realize such promise, significant progress is still required to address materials and metrological challenges—among which, one main challenge is to make the bulk of the topological insulator sufficiently insulating to improve the robustness of resistance quantization. In this Perspective, we present an overview of the QAHE; discuss the aspects of topological material growth and characterization; and present a path toward a QAHE resistance standard realized in magnetically doped (Bi,Sb)2Te3 systems. We also present guidelines and methodologies for QAHE resistance metrology, its main limitations and challenges, as well as modern strategies to overcome them.

1.
E. H.
Hall
, “
On a new action of the magnet on electric currents
,”
Am. J. Math.
2
,
287
(
1879
).
2.
K.
von Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
(
1980
).
3.
M.
Stock
,
R.
Davis
,
E.
de Mirandés
, and
M. J. T.
Milton
, “
The revision of the SI – the result of three decades of progress in metrology
,”
Metrologia
56
,
022001
(
2019
).
4.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
, “
Experimental observation of the quantum Hall effect and Berry's phase in graphene
,”
Nature
438
,
201
(
2005
).
5.
A.
Tzalenchuk
,
S.
Lara-Avila
,
A.
Kalaboukhov
,
S.
Paolillo
,
M.
Syväjärvi
,
R.
Yakimova
,
O.
Kazakova
,
T. J. B. M.
Janssen
,
V.
Fal'ko
, and
S.
Kubatkin
, “
Towards a quantum resistance standard based on epitaxial graphene
,”
Nat. Nanotechnol.
5
,
186
(
2010
).
6.
A.
Chatterjee
,
M.
Kruskopf
,
M.
Götz
,
Y.
Yin
,
E.
Pesel
,
P.
Gournay
,
B.
Rolland
,
J.
Kučera
,
S.
Bauer
,
K.
Pierz
,
B.
Schumacher
, and
H.
Scherer
, “
Performance and stability assessment of graphene-based quantum Hall devices for resistance metrology
,”
IEEE Trans. Instrum. Meas.
72
,
1502206
(
2023
).
7.
Y.
Okazaki
,
T.
Oe
,
M.
Kawamura
,
R.
Yoshimi
,
S.
Nakamura
,
S.
Takada
,
M.
Mogi
,
K. S.
Takahashi
,
A.
Tsukazaki
,
M.
Kawasaki
,
Y.
Tokura
, and
N.-H.
Kaneko
, “
Quantum anomalous Hall effect with a permanent magnet defines a quantum resistance standard
,”
Nat. Phys.
18
,
25
(
2022
).
8.
M.
Onoda
and
N.
Nagaona
, “
Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals
,”
Phys. Rev. Lett.
90
,
206601
(
2003
).
9.
C. L.
Kane
and
E. J.
Mele
, “
Z2 topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
10.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
11.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
(
2006
).
12.
J. E.
Moore
and
L.
Balents
, “
Topological invariants of time-reversal-invariant band structures
,”
Phys. Rev. B
75
,
121306
(
2007
).
13.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
, “
Topological insulators in three dimensions
,”
Phys. Rev. Lett.
98
,
106803
(
2007
).
14.
L.
Fu
and
C. L.
Kane
, “
Topological insulators with inversion symmetry
,”
Phys. Rev. B
76
,
045302
(
2007
).
15.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
(
2007
).
16.
D.
Hsieh
,
D.
Qian
,
L.
Wray
,
Y.
Xia
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
, “
A topological Dirac insulator in a quantum spin Hall phase
,”
Nature
452
,
970
(
2008
).
17.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
18.
C.-X.
Liu
,
X.-L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S.-C.
Zhang
, “
Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells
,”
Phys. Rev. Lett.
101
,
146802
(
2008
).
19.
M.
König
,
H.
Buhmann
,
L. W.
Molenkamp
,
T.
Hughes
,
C.-X.
Liu
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
The quantum spin Hall effect: Theory and experiment
,”
J. Phys. Soc. Jpn.
77
,
031007
(
2008
).
20.
J. K.
Furdyna
, “
Diluted magnetic semiconductors
,”
J. Appl. Phys.
64
,
R29
(
1988
).
21.
S.
Shamim
,
W.
Beugeling
,
J.
Böttcher
,
P.
Shekhar
,
A.
Budewitz
,
P.
Leubner
,
L.
Lunczer
,
E. M.
Hankiewicz
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Emergent quantum Hall effects below 50 mT in a two-dimensional topological insulator
,”
Sci. Adv.
6
,
eaba4625
(
2020
).
22.
H.
Zhang
,
C.-X.
Liu
,
X.-L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S.-C.
Zhang
, “
Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface
,”
Nat. Phys.
5
,
438
(
2009
).
23.
R.
Yu
,
W.
Zhang
,
H.-J.
Zhang
,
S.-C.
Zhang
,
X.
Dai
, and
Z.
Fang
, “
Quantized anomalous Hall effect in magnetic topological insulators
,”
Science
329
,
61
(
2010
).
24.
C.-Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.-L.
Wang
,
Z.-Q.
Ji
,
Y.
Feng
,
S.
Ji
,
X.
Chen
,
J.
Jia
,
X.
Dai
,
Z.
Fang
,
S.-C.
Zhang
,
K.
He
,
Y.
Wang
,
L.
Lu
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
(
2013
).
25.
J. G.
Checkelsky
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
Y.
Kozuka
,
J.
Falson
,
M.
Kawasaki
, and
Y.
Tokura
, “
Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator
,”
Nat. Phys.
10
,
731
(
2014
).
26.
X.
Kou
,
S.-T.
Guo
,
Y.
Fan
,
L.
Pan
,
M.
Lang
,
Y.
Jiang
,
Q.
Shao
,
T.
Nie
,
K.
Murata
,
J.
Tang
,
Y.
Wang
,
L.
He
,
T.-K.
Lee
,
W.-L.
Lee
, and
K. L.
Wang
, “
Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit
,”
Phys. Rev. Lett.
113
,
137201
(
2014
).
27.
A. J.
Bestwick
,
E. J.
Fox
,
X.
Kou
,
L.
Pan
,
K. L.
Wang
, and
D.
Goldhaber-Gordon
, “
Precise quantization of the anomalous Hall effect near zero magnetic field
,”
Phys. Rev. Lett.
114
,
187201
(
2015
).
28.
A.
Kandala
,
A.
Richardella
,
S.
Kempinger
,
C.-X.
Liu
, and
N.
Samarth
, “
Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator
,”
Nat. Commun.
6
,
7434
(
2015
).
29.
C.-Z.
Chang
,
W.
Zhao
,
D. Y.
Kim
,
P.
Wei
,
J. K.
Jain
,
C.
Liu
,
M. H. W.
Chan
, and
J. S.
Moodera
, “
Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state
,”
Phys. Rev. Lett.
115
,
057206
(
2015
).
30.
C.-Z.
Chang
,
W.
Zhao
,
D. Y.
Kim
,
H.
Zhang
,
B. A.
Assaf
,
D.
Heiman
,
S.-C.
Zhang
,
C.
Liu
,
M. H. W.
Chan
, and
J. S.
Moodera
, “
High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
,”
Nat. Mater.
14
,
473
(
2015
).
31.
S.
Grauer
,
S.
Schreyeck
,
M.
Winnerlein
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state
,”
Phys. Rev. B
92
,
201304
(
2015
).
32.
M.
Götz
,
K. M.
Fijalkowski
,
E.
Pesel
,
M.
Hartl
,
S.
Schreyeck
,
M.
Winnerlein
,
S.
Grauer
,
H.
Scherer
,
K.
Brunner
,
C.
Gould
,
F. J.
Ahlers
, and
L. W.
Molenkamp
, “
Precision measurement of the quantized anomalous Hall resistance at zero magnetic field
,”
Appl. Phys. Lett.
112
,
072102
(
2018
).
33.
E. J.
Fox
,
I. T.
Rosen
,
Y.
Yang
,
G. R.
Jones
,
R. E.
Elmquist
,
X.
Kou
,
L.
Pan
,
K. L.
Wang
, and
D.
Goldhaber-Gordon
, “
Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect
,”
Phys. Rev. B
98
,
075145
(
2018
).
34.
Y.
Okazaki
,
T.
Oe
,
M.
Kawamura
,
R.
Yoshimi
,
S.
Nakamura
,
S.
Takada
,
M.
Mogi
,
K. S.
Takahashi
,
A.
Tsukazaki
,
M.
Kawasaki
,
Y.
Tokura
, and
N.-H.
Kaneko
, “
Precise resistance measurement of quantum anomalous Hall effect in magnetic heterostructure film of topological insulator
,”
Appl. Phys. Lett.
116
,
143101
(
2020
).
35.
L. K.
Rodenbach
,
A. R.
Panna
,
S. U.
Payagala
,
I. T.
Rosen
,
M. P.
Andersen
,
P.
Zhang
,
L.
Tai
,
K. L.
Wang
,
D. G.
Jarrett
,
R. E.
Elmquist
,
D. B.
Newell
,
D.
Goldhaber-Gordon
, and
A. F.
Rigosi
, “
Metrological assessment of quantum anomalous Hall properties
,”
Phys. Rev. Appl.
18
,
034008
(
2022
).
36.
D. K.
Patel
,
K. M.
Fijalkowski
,
M.
Kruskopf
,
N.
Liu
,
M.
Götz
,
E.
Pesel
,
M.
Jaime
,
M.
Klement
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
,
L. W.
Molenkamp
, and
H.
Scherer
, “
Zero external magnetic field quantum standard of resistance at the 109 level
,”
Nat. Electron.
7
,
1111
(
2024
).
37.
C.-Z.
Chang
,
C.-X.
Liu
, and
A. H.
MacDonald
, “
Colloquium: Quantum anomalous Hall effect
,”
Rev. Mod. Phys.
95
,
011002
(
2023
).
38.
J.
Wang
,
B.
Lian
, and
S.-C.
Zhang
, “
Universal scaling of the quantum anomalous Hall plateau transition
,”
Phys. Rev. B
89
,
085106
(
2014
).
39.
X.
Kou
,
L.
Pan
,
J.
Wang
,
Y.
Fan
,
E. S.
Choi
,
W.-L.
Lee
,
T.
Nie
,
K.
Murata
,
Q.
Shao
,
S.-C.
Zhang
, and
K. L.
Wang
, “
Metal-to-insulator switching in quantum anomalous Hall states
,”
Nat. Commun.
6
,
8474
(
2015
).
40.
M.
Kawamura
,
M.
Mogi
,
R.
Yoshimi
,
A.
Tsukazaki
,
Y.
Kozuka
,
K. S.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
, “
Topological quantum phase transition in magnetic topological insulator upon magnetization rotation
,”
Phys. Rev. B
98
,
140404
(
2018
).
41.
A. M. M.
Pruisken
, “
Dilute instanton gas as the precursor to the integral quantum Hall effect
,”
Phys. Rev. B
32
,
2636
(
1985
).
42.
A. M. M.
Pruisken
, “
Universal singularities in the integral quantum Hall effect
,”
Phys. Rev. Lett.
61
,
1297
(
1988
).
43.
S.
Kivelson
,
D.-H.
Lee
, and
S.-C.
Zhang
, “
Global phase diagram in the quantum Hall effect
,”
Phys. Rev. B
46
,
2223
(
1992
).
44.
A. M.
Dykhne
and
I. M.
Ruzin
, “
Theory of the fractional quantum Hall effect: The two-phase model
,”
Phys. Rev. B
50
,
2369
(
1994
).
45.
I.
Ruzin
and
S.
Feng
, “
Universal relation between longitudinal and transverse conductivities in quantum Hall effect
,”
Phys. Rev. Lett.
74
,
154
(
1995
).
46.
M.
Hilke
,
D.
Shahar
,
S. H.
Song
,
D. C.
Tsui
,
Y. H.
Xie
, and
M.
Shayegan
, “
Semicircle: An exact relation in the integer and fractional quantum Hall effect
,”
Europhys. Lett.
46
,
775
(
1999
).
47.
K. M.
Fijalkowski
,
N.
Liu
,
M.
Hartl
,
M.
Winnerlein
,
P.
Mandal
,
A.
Coschizza
,
A.
Fothergill
,
S.
Grauer
,
S.
Schreyeck
,
K.
Brunner
,
M.
Greiter
,
R.
Thomale
,
C.
Gould
, and
L. W.
Molenkamp
, “
Any axion insulator must be a bulk three-dimensional topological insulator
,”
Phys. Rev. B
103
,
235111
(
2021
).
48.
F.
Wilczek
, “
Two applications of axion electrodynamics
,”
Phys. Rev. Lett.
58
,
1799
(
1987
).
49.
X.-L.
Qi
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Topological field theory of time-reversal invariant insulators
,”
Phys. Rev. B
78
,
195424
(
2008
).
50.
A. M.
Essin
,
J. E.
Moore
, and
D.
Vanderbilt
, “
Magnetoelectric polarizability and axion electrodynamics in crystalline insulators
,”
Phys. Rev. Lett.
102
,
146805
(
2009
).
51.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
(
2011
).
52.
K.
Nomura
and
N.
Nagaosa
, “
Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators
,”
Phys. Rev. Lett.
106
,
166802
(
2011
).
53.
J.
Wang
,
B.
Lian
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state
,”
Phys. Rev. B
92
,
081107
(
2015
).
54.
T.
Morimoto
,
A.
Furusaki
, and
N.
Nagaosa
, “
Topological magnetoelectric effects in thin films of topological insulators
,”
Phys. Rev. B
92
,
085113
(
2015
).
55.
W.-K.
Tse
and
A. H.
MacDonald
, “
Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators
,”
Phys. Rev. Lett.
105
,
057401
(
2010
).
56.
J.
Maciejko
,
X.-L.
Qi
,
H. D.
Drew
, and
S.-C.
Zhang
, “
Topological quantization in units of the fine structure constant
,”
Phys. Rev. Lett.
105
,
166803
(
2010
).
57.
M.
Mogi
,
M.
Kawamura
,
R.
Yoshimi
,
A.
Tsukazaki
,
Y.
Kozuka
,
N.
Shirakawa
,
K. S.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
, “
A magnetic heterostructure of topological insulators as a candidate for an axion insulator
,”
Nat. Mater.
16
,
516
(
2017
).
58.
S.
Grauer
,
K. M.
Fijalkowski
,
S.
Schreyeck
,
M.
Winnerlein
,
K.
Brunner
,
R.
Thomale
,
C.
Gould
, and
L. W.
Molenkamp
, “
Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics
,”
Phys. Rev. Lett.
118
,
246801
(
2017
).
59.
M.
Mogi
,
M.
Kawamura
,
A.
Tsukazaki
,
R.
Yoshimi
,
K. S.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
, “
Tailoring tricolor structure of magnetic topological insulator for robust axion insulator
,”
Sci. Adv.
3
,
eaao1669
(
2017
).
60.
D.
Xiao
,
J.
Jiang
,
J.-H.
Shin
,
W.
Wang
,
F.
Wang
,
Y.-F.
Zhao
,
C.
Liu
,
W.
Wu
,
M. H. W.
Chan
,
N.
Samarth
, and
C.-Z.
Chang
, “
Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures
,”
Phys. Rev. Lett.
120
,
056801
(
2018
).
61.
X.
Wu
,
D.
Xiao
,
C.-Z.
Chen
,
J.
Sun
,
L.
Zhang
,
M. H. W.
Chan
,
N.
Samarth
,
X. C.
Xie
,
X.
Lin
, and
C.-Z.
Chang
, “
Scaling behavior of the quantum phase transition from a quantum-anomalous-Hall insulator to an axion insulator
,”
Nat. Commun.
11
,
4532
(
2020
).
62.
M.
Mogi
,
Y.
Okamura
,
M.
Kawamura
,
R.
Yoshimi
,
K.
Yasuda
,
A.
Tsukazaki
,
K. S.
Takahashi
,
T.
Morimoto
,
N.
Nagaosa
,
M.
Kawasaki
,
Y.
Takahashi
, and
Y.
Tokura
, “
Experimental signature of the parity anomaly in a semi-magnetic topological insulator
,”
Nat. Phys.
18
,
390
(
2022
).
63.
D.
Zhuo
,
Z.-J.
Yan
,
Z.-T.
Sun
,
L.-J.
Zhou
,
Y.-F.
Zhao
,
R.
Zhang
,
R.
Mei
,
H.
Yi
,
K.
Wang
,
M. H. W.
Chan
,
C.-X.
Liu
,
K. T.
Law
, and
C.-Z.
Chang
, “
Axion insulator state in hundred-nanometer-thick magnetic topological insulator sandwich heterostructures
,”
Nat. Commun.
14
,
7596
(
2023
).
64.
L.-X.
Wang
,
W.
Beugeling
,
F.
Schmitt
,
L.
Lunczer
,
J.-B.
Mayer
,
H.
Buhmann
,
E. M.
Hankiewicz
, and
L. W.
Molenkamp
, “
Spectral asymmetry induces a re-entrant quantum Hall effect in a topological insulator
,”
Adv. Sci.
11
,
2307447
(
2024
).
65.
L.
Wu
,
M.
Salehi
,
N.
Koirala
,
J.
Moon
,
S.
Oh
, and
N. P.
Armitage
, “
Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator
,”
Science
354
,
1124
(
2016
).
66.
K. N.
Okada
,
Y.
Takahashi
,
M.
Mogi
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
N.
Ogawa
,
M.
Kawasaki
, and
Y.
Tokura
, “
Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state
,”
Nat. Commun.
7
,
12245
(
2016
).
67.
V.
Dziom
,
A.
Shuvaev
,
A.
Pimenov
,
G. V.
Astakhov
,
C.
Ames
,
K.
Bendias
,
J.
Böttcher
,
G.
Tkachov
,
E. M.
Hankiewicz
,
C.
Brüne
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Observation of the universal magnetoelectric effect in a 3D topological insulator
,”
Nat. Commun.
8
,
15197
(
2017
).
68.
C.
Berger
,
F.
Bayer
,
L. W.
Molenkamp
, and
T.
Kiessling
, “
Diminishing topological Faraday effect in thin layer samples
,”
Phys. Rev. Res.
6
,
013068
(
2024
).
69.
X.
Kou
,
M.
Lang
,
Y.
Fan
,
Y.
Jiang
,
T.
Nie
,
J.
Zhang
,
W.
Jiang
,
Y.
Wang
,
Y.
Yao
,
L.
He
, and
K. L.
Wang
, “
Interplay between different magnetisms in Cr-doped topological insulators
,”
ACS Nano
7
,
9205
(
2013
).
70.
C.-Z.
Chang
,
J.
Zhang
,
M.
Liu
,
Z.
Zhang
,
X.
Feng
,
K.
Li
,
L.-L.
Wang
,
X.
Chen
,
X.
Dai
,
Z.
Fang
,
X.-L.
Qi
,
S.-C.
Zhang
,
Y.
Wang
,
K.
He
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order
,”
Adv. Mater.
25
,
1065
(
2013
).
71.
M.
Li
,
C.-Z.
Chang
,
L.
Wu
,
J.
Tao
,
W.
Zhao
,
M. H. W.
Chan
,
J. S.
Moodera
,
J.
Li
, and
Y.
Zhu
, “
Experimental verification of the Van Vleck nature of long-range ferromagnetic order in the vanadium-doped three-dimensional topological insulator Sb2Te3
,”
Phys. Rev. Lett.
114
,
146802
(
2015
).
72.
W.
Wang
,
Y.
Ou
,
C.
Liu
,
Y.
Wang
,
K.
He
,
Q.-K.
Xue
, and
W.
Wu
, “
Direct evidence of ferromagnetism in a quantum anomalous Hall system
,”
Nat. Phys.
14
,
791
(
2018
).
73.
H.
Li
,
Y. R.
Song
,
M.-Y.
Yao
,
F.
Yang
,
L.
Miao
,
F.
Zhu
,
C.
Liu
,
C. L.
Gao
,
D.
Qian
,
X.
Yao
,
J.-F.
Jia
,
Y. J.
Shi
, and
D.
Wu
, “
Carriers dependence of the magnetic properties in magnetic topological insulator Sb1.95−xBixCr0.05Te3
,”
Appl. Phys. Lett.
101
,
072406
(
2012
).
74.
M. G.
Vergniory
,
M. M.
Otrokov
,
D.
Thonig
,
M.
Hoffmann
,
I. V.
Maznichenko
,
M.
Geilhufe
,
X.
Zubizarreta
,
S.
Ostanin
,
A.
Marmodoro
,
J.
Henk
,
W.
Hergert
,
I.
Mertig
,
E. V.
Chulkov
, and
A.
Ernst
, “
Exchange interaction and its tuning in magnetic binary chalcogenides
,”
Phys. Rev. B
89
,
165202
(
2014
).
75.
T. R. F.
Peixoto
,
H.
Bentmann
,
S.
Schreyeck
,
M.
Winnerlein
,
C.
Seibel
,
H.
Maaß
,
M.
Al-Baidhani
,
K.
Treiber
,
S.
Schatz
,
S.
Grauer
,
C.
Gould
,
K.
Brunner
,
A.
Ernst
,
L. W.
Molenkamp
, and
F.
Reinert
, “
Impurity states in the magnetic topological insulator V:(Bi,Sb)2Te3
,”
Phys. Rev. B
94
,
195140
(
2016
).
76.
M.
Ye
,
T.
Xu
,
G.
Li
,
S.
Qiao
,
Y.
Takeda
,
Y.
Saitoh
,
S.-Y.
Zhu
,
M.
Nurmamat
,
K.
Sumida
,
Y.
Ishida
,
S.
Shin
, and
A.
Kimura
, “
Negative Te spin polarization responsible for ferromagnetic order in the doped topological insulator V0.04(Sb1−xBix) 1.96 Te3
,”
Phys. Rev. B
99
,
144413
(
2019
).
77.
A.
Tcakaev
,
V. B.
Zabolotnyy
,
R. J.
Green
,
T. R. F.
Peixoto
,
F.
Stier
,
M.
Dettbarn
,
S.
Schreyeck
,
M.
Winnerlein
,
R. C.
Vidal
,
S.
Schatz
,
H. B.
Vasili
,
M.
Valvidares
,
K.
Brunner
,
C.
Gould
,
H.
Bentmann
,
F.
Reinert
,
L. W.
Molenkamp
, and
V.
Hinkov
, “
Comparing magnetic ground-state properties of the V- and Cr-doped topological insulator (Bi,Sb)2Te3
,”
Phys. Rev. B
101
,
045127
(
2020
).
78.
E. O.
Lachman
,
A. F.
Young
,
A.
Richardella
,
J.
Cuppens
,
H. R.
Naren
,
Y.
Anahory
,
A. Y.
Meltzer
,
A.
Kandala
,
S.
Kempinger
,
Y.
Myasoedov
,
M. E.
Huber
,
N.
Samarth
, and
E.
Zeldov
, “
Visualization of superparamagnetic dynamics in magnetic topological insulators
,”
Sci. Adv.
1
,
e1500740
(
2015
).
79.
G.
Qiu
,
P.
Zhang
,
P.
Deng
,
S. K.
Chong
,
L.
Tai
,
C.
Eckberg
, and
K. L.
Wang
, “
Mesoscopic transport of quantum anomalous Hall effect in the submicron size regime
,”
Phys. Rev. Lett.
128
,
217704
(
2022
).
80.
K. M.
Fijalkowski
,
N.
Liu
,
P.
Mandal
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
Macroscopic quantum tunneling of a topological ferromagnet
,”
Adv. Sci.
10
,
2303165
(
2023
).
81.
L.-J.
Zhou
,
R.
Mei
,
Y.-F.
Zhao
,
R.
Zhang
,
D.
Zhuo
,
Z.-J.
Yan
,
W.
Yuan
,
M.
Kayyalha
,
M. H. W.
Chan
,
C.-X.
Liu
, and
C.-Z.
Chang
, “
Confinement-induced chiral edge channel interaction in quantum anomalous Hall insulators
,”
Phys. Rev. Lett.
130
,
086201
(
2023
).
82.
W.
Wang
,
C.-Z.
Chang
,
J. S.
Moodera
, and
W.
Wu
, “
Visualizing ferromagnetic domain behavior of magnetic topological insulator thin films
,”
npj Quant. Mater.
1
,
16023
(
2016
).
83.
K.
Yasuda
,
M.
Mogi
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
M.
Kawasaki
,
F.
Kagawa
, and
Y.
Tokura
, “
Quantized chiral edge conduction on domain walls of a magnetic topological insulator
,”
Science
358
,
1311
(
2017
).
84.
K.
Yasuda
,
R.
Wakatsuki
,
T.
Morimoto
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
M.
Ezawa
,
M.
Kawasaki
,
N.
Nagaosa
, and
Y.
Tokura
, “
Geometric Hall effects in topological insulator heterostructures
,”
Nat. Phys.
12
,
555
(
2016
).
85.
C.
Liu
,
Y.
Zang
,
W.
Ruan
,
Y.
Gong
,
K.
He
,
X.
Ma
,
Q.-K.
Xue
, and
Y.
Wang
, “
Dimensional crossover-induced topological Hall effect in a magnetic topological insulator
,”
Phys. Rev. Lett.
119
,
176809
(
2017
).
86.
J.
Jiang
,
D.
Xiao
,
F.
Wang
,
J.-H.
Shin
,
D.
Andreoli
,
J.
Zhang
,
R.
Xiao
,
Y.-F.
Zhao
,
M.
Kayyalha
,
L.
Zhang
,
K.
Wang
,
J.
Zang
,
C.
Liu
,
N.
Samarth
,
M. H. W.
Chan
, and
C.-Z.
Chang
, “
Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures
,”
Nat. Mater.
19
,
732
(
2020
).
87.
K. M.
Fijalkowski
,
M.
Hartl
,
M.
Winnerlein
,
P.
Mandal
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
Coexistence of surface and bulk ferromagnetism mimics skyrmion Hall effect in a topological insulator
,”
Phys. Rev. X
10
,
011012
(
2020
).
88.
M.
Liu
,
W.
Wang
,
A. R.
Richardella
,
A.
Kandala
,
J.
Li
,
A.
Yazdani
,
N.
Samarth
, and
N. P.
Ong
, “
Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator
,”
Sci. Adv.
2
,
e1600167
(
2016
).
89.
M.
Kawamura
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
, “
Current-driven instability of the quantum anomalous Hall effect in ferromagnetic topological insulators
,”
Phys. Rev. Lett.
119
,
016803
(
2017
).
90.
L. K.
Rodenbach
,
I. T.
Rosen
,
E. J.
Fox
,
P.
Zhang
,
L.
Pan
,
K. L.
Wang
,
M. A.
Kastner
, and
D.
Goldhaber-Gordon
, “
Bulk dissipation in the quantum anomalous Hall effect
,”
APL Mater.
9
,
081116
(
2021
).
91.
G.
Lippertz
,
A.
Bliesener
,
A.
Uday
,
L. M. C.
Pereira
,
A. A.
Taskin
, and
Y.
Ando
, “
Current-induced breakdown of the quantum anomalous Hall effect
,”
Phys. Rev. B
106
,
045419
(
2022
).
92.
K. M.
Fijalkowski
,
N.
Liu
,
M.
Klement
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
A balanced quantum Hall resistor
,”
Nat. Electron.
7
,
438
(
2024
).
93.
W.
Li
,
M.
Claassen
,
C.-Z.
Chang
,
B.
Moritz
,
T.
Jia
,
C.
Zhang
,
S.
Rebec
,
J. J.
Lee
,
M.
Hashimoto
,
D.-H.
Lu
,
R. G.
Moore
,
J. S.
Moodera
,
T. P.
Devereaux
, and
Z.-X.
Shen
, “
Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi,Sb)2Te3 film
,”
Sci. Rep.
6
,
32732
(
2016
).
94.
K.
Yasuda
,
T.
Morimoto
,
R.
Yoshimi
,
M.
Mogi
,
A.
Tsukazaki
,
M.
Kawamura
,
K. S.
Takahashi
,
M.
Kawasaki
,
N.
Nagaosa
, and
Y.
Tokura
, “
Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states
,”
Nat. Nanotechnol.
15
,
831
(
2020
).
95.
K. M.
Fijalkowski
,
N.
Liu
,
P.
Mandal
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
Quantum anomalous Hall edge channels survive up to the Curie temperature
,”
Nat. Commun.
12
,
5599
(
2021
).
96.
M.
Mogi
,
R.
Yoshimi
,
A.
Tsukazaki
,
K.
Yasuda
,
Y.
Kozuka
,
K. S.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
, “
Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect
,”
Appl. Phys. Lett.
107
,
182401
(
2015
).
97.
M.
Winnerlein
,
S.
Schreyeck
,
S.
Grauer
,
S.
Rosenberger
,
K. M.
Fijalkowski
,
C.
Gould
,
K.
Brunner
, and
L. W.
Molenkamp
, “
Epitaxy and structural properties of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect
,”
Phys. Rev. Mater.
1
,
011201
(
2017
).
98.
Y.
Ou
,
C.
Liu
,
G.
Jiang
,
Y.
Feng
,
D.
Zhao
,
W.
Wu
,
X.-X.
Wang
,
W.
Li
,
C.
Song
,
L.-L.
Wang
,
W.
Wang
,
W.
Wu
,
Y.
Wang
,
K.
He
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator
,”
Adv. Mater.
30
,
1703062
(
2018
).
99.
X.
Feng
,
Y.
Feng
,
J.
Wang
,
Y.
Ou
,
Z.
Hao
,
C.
Liu
,
Z.
Zhang
,
L.
Zhang
,
C.
Lin
,
J.
Liao
,
Y.
Li
,
L.-L.
Wang
,
S.-H.
Ji
,
X.
Chen
,
X.
Ma
,
S.-C.
Zhang
,
Y.
Wang
,
K.
He
, and
Q.-K.
Xue
, “
Thickness dependence of the quantum anomalous Hall effect in magnetic topological insulator films
,”
Adv. Mater.
28
,
6386
(
2016
).
100.
Y.-F.
Zhao
,
R.
Zhang
,
Z.-T.
Sun
,
L.-J.
Zhou
,
D.
Zhuo
,
Z.-J.
Yan
,
H.
Yi
,
K.
Wang
,
M. H. W.
Chan
,
C.-X.
Liu
,
K. T.
Law
, and
C.-Z.
Chang
, “
3D quantum anomalous Hall effect in magnetic topological insulator trilayers of hundred-nanometer thickness
,”
Adv. Mater.
36
,
2310249
(
2024
).
101.
H. T.
Yi
,
D.
Jain
,
X.
Yao
, and
S.
Oh
, “
Enhanced quantum anomalous Hall effect with an active capping layer
,”
Nano Lett.
23
,
5673
(
2023
).
102.
B.
Skinner
,
T.
Chen
, and
B. I.
Shklovskii
, “
Why is the bulk resistivity of topological insulators so small?
Phys. Rev. Lett.
109
,
176801
(
2012
).
103.
T.
Chen
and
B. I.
Shklovskii
, “
Anomalously small resistivity and thermopower of strongly compensated semiconductors and topological insulators
,”
Phys. Rev. B
87
,
165119
(
2013
).
104.
D.
Nandi
,
B.
Skinner
,
G. H.
Lee
,
K.-F.
Huang
,
K.
Shain
,
C.-Z.
Chang
,
Y.
Ou
,
S.-P.
Lee
,
J.
Ward
,
J. S.
Moodera
,
P.
Kim
,
B. I.
Halperin
, and
A.
Yacoby
, “
Signatures of long-range-correlated disorder in the magnetotransport of ultrathin topological insulators
,”
Phys. Rev. B
98
,
214203
(
2018
).
105.
Y.
Huang
and
B. I.
Shklovskii
, “
Disorder effects in topological insulator thin films
,”
Phys. Rev. B
103
,
165409
(
2021
).
106.
A.
Park
,
A.
Llanos
,
C.-I.
Lu
,
Y.
Chen
,
S. N.
Abadi
,
C.-C.
Chen
,
M. L.
Teague
,
L.
Tai
,
P.
Zhang
,
K. L.
Wang
, and
N.-C.
Yeh
, “
Phonon and defect mediated quantum anomalous Hall insulator to metal transition in magnetically doped topological insulators
,”
Phys. Rev. B
109
,
075125
(
2024
).
107.
J.
Zhang
,
C.-Z.
Chang
,
Z.
Zhang
,
J.
Wen
,
X.
Feng
,
K.
Li
,
M.
Liu
,
K.
He
,
L.
Wang
,
X.
Chen
,
Q.-K.
Xue
,
X.
Ma
, and
Y.
Wang
, “
Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators
,”
Nat. Commun.
2
,
574
(
2011
).
108.
A.
Thenapparambil
,
G. E.
dos Santos
,
C.-A.
Li
,
M.
Abdelghany
,
W.
Beugeling
,
H.
Buhmann
,
C.
Gould
,
S.-B.
Zhang
,
B.
Trauzettel
, and
L. W.
Molenkamp
, “
Fluctuations in planar magnetotransport due to tilted Dirac cones in topological materials
,”
Nano Lett.
23
,
6914
(
2023
).
109.
C.
Fuchs
,
S.
Shamim
,
P.
Shekhar
,
L.
Fürst
,
J.
Kleinlein
,
J. I.
Väyrynen
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Kondo interaction of quantum spin Hall edge channels with charge puddles
,”
Phys. Rev. B
108
,
205302
(
2023
).
110.
J. P.
Faurie
and
A.
Million
, “
Molecular beam epitaxy of II–VI compounds: CdxHg1−xTe
,”
J. Cryst. Growth
54
,
582
(
1981
).
111.
W. D.
Lawson
,
S.
Nielsen
,
E. H.
Putley
, and
A. S.
Young
, “
Preparation and properties of HgTe and mixed crystals of HgTe-CdTe
,”
J. Phys. Chem. Solids
9
,
325
(
1959
).
112.
I. T.
Rosen
,
M. P.
Andersen
,
L. K.
Rodenbach
,
L.
Tai
,
P.
Zhang
,
K. L.
Wang
,
M. A.
Kastner
, and
D.
Goldhaber-Gordon
, “
Measured potential profile in a quantum anomalous Hall system suggests bulk-dominated current flow
,”
Phys. Rev. Lett.
129
,
246602
(
2022
).
113.
G. M.
Ferguson
,
R.
Xiao
,
A. R.
Richardella
,
D.
Low
,
N.
Samarth
, and
K. C.
Nowack
, “
Direct visualization of electronic transport in a quantum anomalous Hall insulator
,”
Nat. Mater.
22
,
1100
(
2023
).
114.
K. M.
Fijalkowski
and
C.
Gould
, “
Quantization breakdown protection for semiconductors and in perticular topological insulators
,” European patent filing EP23162996.5 (
2023
).
115.
R.
Ribeiro-Palau
,
F.
Lafont
,
J.
Brun-Picard
,
D.
Kazazis
,
A.
Michon
,
F.
Cheynis
,
O.
Couturaud
,
C.
Consejo
,
B.
Jouault
,
W.
Poirier
, and
F.
Schopfer
, “
Quantum Hall resistance standard in graphene devices under relaxed experimental conditions
,”
Nat. Nanotechnol.
10
,
965
(
2015
).
116.
A. A.
Taskin
,
S.
Sasaki
,
K.
Segawa
, and
Y.
Ando
, “
Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films
,”
Phys. Rev. Lett.
109
,
066803
(
2012
).
117.
J. J.
Lee
,
F. T.
Schmitt
,
R. G.
Moore
,
I. M.
Vishik
,
Y.
Ma
, and
Z. X.
Shen
, “
Intrinsic ultrathin topological insulators grown via molecular beam epitaxy characterized by in-situ angle resolved photoemission spectroscopy
,”
Appl. Phys. Lett.
101
,
013118
(
2012
).
118.
N.
Bansal
,
Y. S.
Kim
,
M.
Brahlek
,
E.
Edrey
, and
S.
Oh
, “
Thickness-independent transport channels in topological insulator Bi2Se3 thin films
,”
Phys. Rev. Lett.
109
,
116804
(
2012
).
119.
S. E.
Harrison
,
S.
Li
,
Y.
Huo
,
B.
Zhou
,
Y. L.
Chen
, and
J. S.
Harris
, “
Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy
,”
Appl. Phys. Lett.
102
,
171906
(
2013
).
120.
Y.
Zhao
,
C.-Z.
Chang
,
Y.
Jiang
,
A.
DaSilva
,
Y.
Sun
,
H.
Wang
,
Y.
Xing
,
Y.
Wang
,
K.
He
,
X.
Ma
,
Q.-K. X.
Xue
, and
J.
Wang
, “
Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure
,”
Sci. Rep.
3
,
3060
(
2013
).
121.
J.
Chen
,
H. J.
Qin
,
F.
Yang
,
J.
Liu
,
T.
Guan
,
F. M.
Qu
,
G. H.
Zhang
,
J. R.
Shi
,
X. C.
Xie
,
C. L.
Yang
,
K. H.
Wu
,
Y. Q.
Li
, and
L.
Lu
, “
Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3
,”
Phys. Rev. Lett.
105
,
176602
(
2010
).
122.
G.
Zhang
,
H.
Qin
,
J.
Chen
,
X.
He
,
L.
Lu
,
Y.
Li
, and
K.
Wu
, “
Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential
,”
Adv. Funct. Mater.
21
,
2351
(
2011
).
123.
A.
Richardella
,
D. M.
Zhang
,
J. S.
Lee
,
A.
Koser
,
D. W.
Rench
,
A. L.
Yeats
,
B. B.
Buckley
,
D. D.
Awschalom
, and
N.
Samarth
, “
Coherent heteroepitaxy of Bi2Se3 on GaAs (111)B
,”
Appl. Phys. Lett.
97
,
262104
(
2010
).
124.
Z.
Chen
,
T. A.
Garcia
,
J.
De Jesus
,
L.
Zhao
,
H.
Deng
,
J.
Secor
,
M.
Begliarbekov
,
L.
Krusin-Elbaum
, and
M. C.
Tamargo
, “
Molecular beam epitaxial growth and properties of Bi2Se3 topological insulator layers on different substrate surfaces
,”
J. Electron. Mater.
43
,
909
(
2014
).
125.
M.
Eddrief
,
P.
Atkinson
,
V.
Etgens
, and
B.
Jusserand
, “
Low-temperature Raman fingerprints for few-quintuple layer topological insulator Bi2Se3 films epitaxied on GaAs
,”
Nanotechnology
25
,
245701
(
2014
).
126.
X.
Liu
,
D. J.
Smith
,
J.
Fan
,
Y.
Zhang
,
H.
Cao
,
Y. P.
Chen
,
B. J.
Kirby
,
N.
Sun
,
S. T.
Ruggiero
,
J.
Leiner
,
R. E.
Pimpinella
,
J.
Hagmann
,
K.
Tivakornsasithorn
,
M.
Dobrowolska
, and
J. K.
Furdyna
, “
Topological insulators Bi2Te3 and Bi2Se3 grown by MBE on (001) GaAs substrates
,”
AIP Conf. Proc.
1416
,
105
(
2011
).
127.
T.
Guillet
,
A.
Marty
,
C.
Beigne
,
C.
Vergnaud
,
M.-T.
Dau
,
P.
Noel
,
J.
Frigerio
,
G.
Isella
, and
M.
Jamet
, “
Magnetotransport in Bi2Se3 thin films epitaxially grown on Ge(111)
,”
AIP Adv.
8
,
115125
(
2018
).
128.
S.
Kim
,
S.
Lee
,
J.
Woo
, and
G.
Lee
, “
Growth of Bi2Se3 topological insulator thin film on Ge(111) substrate
,”
Appl. Surf. Sci.
432
,
152
(
2018
).
129.
G.
Zhang
,
H.
Qin
,
J.
Teng
,
J.
Guo
,
Q.
Guo
,
X.
Dai
,
Z.
Fang
, and
K.
Wu
, “
Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3
,”
Appl. Phys. Lett.
95
,
053114
(
2009
).
130.
Y.-Y.
Li
,
G.
Wang
,
X.-G.
Zhu
,
M.-H.
Liu
,
C.
Ye
,
X.
Chen
,
Y.-Y.
Wang
,
K.
He
,
L.-L.
Wang
,
X.-C.
Ma
,
H.-J.
Zhang
,
X.
Dai
,
Z.
Fang
,
X.-C.
Xie
,
Y.
Liu
,
X.-L.
Qi
,
J.-F.
Jia
,
S.-C.
Zhang
, and
Q.-K.
Xue
, “
Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit
,”
Adv. Mater.
22
,
4002
(
2010
).
131.
L.
He
,
F.
Xiu
,
Y.
Wang
,
A. V.
Fedorov
,
G.
Huang
,
X.
Kou
,
M.
Lang
,
W. P.
Beyermann
,
J.
Zou
, and
K. L.
Wang
, “
Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111)
,”
J. Appl. Phys.
109
,
103702
(
2011
).
132.
J.
Krumrain
,
G.
Mussler
,
S.
Borisova
,
T.
Stoica
,
L.
Plucinski
,
C.
Schneider
, and
D.
Grützmacher
, “
MBE growth optimization of topological insulator Bi2Te3 films
,”
J. Cryst. Growth
324
,
115
(
2011
).
133.
X.
Liu
,
D. J.
Smith
,
J.
Fan
,
Y.-H.
Zhang
,
H.
Cao
,
Y. P.
Chen
,
J.
Leiner
,
B. J.
Kirby
,
M.
Dobrowolska
, and
J. K.
Furdyna
, “
Structural properties of Bi2Te3 and Bi2Se3 topological insulators grown by molecular beam epitaxy on GaAs(001) substrates
,”
Appl. Phys. Lett.
99
,
171903
(
2011
).
134.
X.
Liu
,
D. J.
Smith
,
H.
Cao
,
Y. P.
Chen
,
J.
Fan
,
Y.-H.
Zhang
,
R. E.
Pimpinella
,
M.
Dobrowolska
, and
J. K.
Furdyna
, “
Characterization of Bi2Te3 and Bi2Se3 topological insulators grown by MBE on (001) GaAs substrates
,”
J. Vac. Sci. Technol. B
30
,
02B103
(
2012
).
135.
X. F.
Kou
,
L.
He
,
F. X.
Xiu
,
M. R.
Lang
,
Z. M.
Liao
,
Y.
Wang
,
A. V.
Fedorov
,
X. X.
Yu
,
J. S.
Tang
,
G.
Huang
,
X. W.
Jiang
,
J. F.
Zhu
,
J.
Zou
, and
K. L.
Wang
, “
Epitaxial growth of high mobility Bi2Se3 thin films on CdS
,”
Appl. Phys. Lett.
98
,
242102
(
2011
).
136.
Y.
Zhang
,
K.
He
,
C.-Z.
Chang
,
C.-L.
Song
,
L.-L.
Wang
,
X.
Chen
,
J.-F.
Jia
,
Z.
Fang
,
X.
Dai
,
W.-Y.
Shan
,
S.-Q.
Shen
,
Q.
Niu
,
X.-L.
Qi
,
S.-C.
Zhang
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit
,”
Nat. Phys.
6
,
584
(
2010
).
137.
L.
He
,
X.
Kou
, and
K. L.
Wang
, “
Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications
,”
Phys. Status Solidi RRL
7
,
50
(
2013
).
138.
A.
Koma
,
K.
Sunouchi
, and
T.
Miyajima
, “
Fabrication of ultrathin heterostructures with van der Waals epitaxy
,”
J. Vac. Sci. Technol. B
3
,
724
(
1985
).
139.
A.
Koma
, “
Van der Waals epitaxy – a new epitaxial growth method for a highly lattice-mismatched system
,”
Thin Solid Films
216
,
72
(
1992
).
140.
F.
Bonell
,
M. G.
Cuxart
,
K.
Song
,
R.
Robles
,
P.
Ordejon
,
S.
Roche
,
A.
Mugarza
, and
S. O.
Valenzuela
, “
Growth of twin-free and low-doped topological insulators on BaF2(111)
,”
Cryst. Growth Des.
17
,
4655
(
2017
).
141.
N.
Bansal
,
N.
Koirala
,
M.
Brahlek
,
M.-G.
Han
,
Y.
Zhu
,
Y.
Cao
,
J.
Waugh
,
D. S.
Dessau
, and
S.
Oh
, “
Robust topological surface states of Bi2Se3 thin films on amorphous SiO2/Si substrate and a large ambipolar gating effect
,”
Appl. Phys. Lett.
104
,
241606
(
2014
).
142.
D. S. H.
Liu
,
M.
Hilse
, and
R.
Engel-Herbert
, “
Sticking coefficients of selenium and tellurium
,”
J. Vac. Sci. Technol. A
39
,
023413
(
2021
).
143.
L.
Zhang
,
R.
Hammond
,
M.
Dolev
,
M.
Liu
,
A.
Palevski
, and
A.
Kapitulnik
, “
High quality ultrathin Bi2Se3 films on CaF2 and CaF2/Si by molecular beam epitaxy with a radio frequency cracker cell
,”
Appl. Phys. Lett.
101
,
153105
(
2012
).
144.
R.
Yoshimi
,
A.
Tsukazaki
,
Y.
Kozuka
,
J.
Falson
,
K. S.
Takahashi
,
J. G.
Checkelsky
,
N.
Nagaosa
,
M.
Kawasaki
, and
Y.
Tokura
, “
Quantum Hall effect on top and bottom surface states of topological insulator (Bi1−xSbx)2Te3 films
,”
Nat. Commun.
6
,
6627
(
2015
).
145.
J.
Liu
and
T.
Hesjedal
, “
Magnetic topological insulator heterostructures: A review
,”
Adv. Mater.
35
,
2102427
(
2023
).
146.
J.
Yuan
,
W.
Ma
,
L.
Zhang
,
Y.
Lu
,
M.
Zhao
,
H.
Guo
,
J.
Zhao
,
W.
Yu
,
Y.
Zhang
,
K.
Zhang
,
H. Y.
Hoh
,
X.
Li
,
K. P.
Loh
,
S.
Li
,
C.-W.
Qiu
, and
Q.
Bao
, “
Infrared nanoimaging reveals the surface metallic plasmons in topological insulator
,”
ACS Photonics
4
,
3055
(
2017
).
147.
S. E.
Harrison
,
L. J.
Collins-McIntyre
,
S.
Li
,
A. A.
Baker
,
L. R.
Shelford
,
Y.
Huo
,
A.
Pushp
,
S. S. P.
Parkin
,
J. S.
Harris
,
E.
Arenholz
,
G.
van der Laan
, and
T.
Hesjedal
, “
Study of Gd-doped Bi2Te3 thin films: Molecular beam epitaxy growth and magnetic properties
,”
J. Appl. Phys.
115
,
023904
(
2014
).
148.
S. E.
Harrison
,
L. J.
Collins-McIntyre
,
P.
Schönherr
,
A.
Vailionis
,
V.
Srot
,
P. A.
van Aken
,
A.
Kellock
,
A.
Pushp
,
S. S.
Parkin
,
J.
Harris
et al, “
Massive Dirac fermion observed in lanthanide-doped topological insulator thin films
,”
Sci. Rep.
5
,
15767
(
2015
).
149.
P.
Ngabonziza
,
R.
Heimbuch
,
N.
de Jong
,
R. A.
Klaassen
,
M. P.
Stehno
,
M.
Snelder
,
A.
Solmaz
,
S. V.
Ramankutty
,
E.
Frantzeskakis
,
E.
van Heumen
,
G.
Koster
,
M. S.
Golden
,
H. J. W.
Zandvliet
, and
A.
Brinkman
, “
In situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects
,”
Phys. Rev. B
92
,
035405
(
2015
).
150.
B.
Leedahl
,
D. W.
Boukhvalov
,
E. Z.
Kurmaev
,
A.
Kukharenko
,
I. S.
Zhidkov
,
N. V.
Gavrilov
,
S. O.
Cholakh
,
P. H.
Le
,
C. W.
Luo
, and
A.
Moewes
, “
Bulk vs. surface structure of 3d metal impurities in topological insulator Bi2Te3
,”
Sci. Rep.
7
,
5758
(
2017
).
151.
D. D.
dos Reis
,
L.
Barreto
,
M.
Bianchi
,
G. A. S.
Ribeiro
,
E. A.
Soares
,
W. S.
e Silva
,
V. E.
de Carvalho
,
J.
Rawle
,
M.
Hoesch
,
C.
Nicklin
,
W. P.
Fernandes
,
J.
Mi
,
B. B.
Iversen
, and
P.
Hofmann
, “
Surface structure of Bi2Se3(111) determined by low-energy electron diffraction and surface x-ray diffraction
,”
Phys. Rev. B
88
,
041404
(
2013
).
152.
L. J.
Collins-McIntyre
,
S. E.
Harrison
,
P.
Schönherr
,
N.-J.
Steinke
,
C. J.
Kinane
,
T. R.
Charlton
,
D.
Alba-Veneroa
,
A.
Pushp
,
A. J.
Kellock
,
S. S. P.
Parkin
,
J. S.
Harris
,
S.
Langridge
,
G.
van der Laan
, and
T.
Hesjedal
, “
Magnetic ordering in Cr-doped Bi2Se3 thin films
,”
Europhys. Lett.
107
,
57009
(
2014
).
153.
P. P. J.
Haazen
,
J.-B.
Laloë
,
T. J.
Nummy
,
H. J. M.
Swagten
,
P.
Jarillo-Herrero
,
D.
Heiman
, and
J. S.
Moodera
, “
Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3
,”
Appl. Phys. Lett.
100
,
082404
(
2012
).
154.
S. M.
Mostafavi Kashani
,
V. G.
Dubrovskii
,
T.
Baumbach
, and
U.
Pietsch
, “
In situ monitoring of MBE growth of a single self-catalyzed GaAs nanowire by x-ray diffraction
,”
J. Phys. Chem. C
125
,
22724
(
2021
).
155.
Y.
Liu
,
M.
Weinert
, and
L.
Li
, “
Spiral growth without dislocations: Molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001)
,”
Phys. Rev. Lett.
108
,
115501
(
2012
).
156.
A.
Karma
and
M.
Plapp
, “
Spiral surface growth without desorption
,”
Phys. Rev. Lett.
81
,
4444
(
1998
).
157.
S. E.
Harrison
,
L. J.
Collins-McIntyre
,
S. L.
Zhang
,
A. A.
Baker
,
A. I.
Figueroa
,
A. J.
Kellock
,
A.
Pushp
,
Y. L.
Chen
,
S. S. P.
Parkin
,
J. S.
Harris
,
G.
van der Laan
, and
T.
Hesjedal
, “
Study of Ho-doped Bi2Te3 topological insulator thin films
,”
Appl. Phys. Lett.
107
,
182406
(
2015
).
158.
A. I.
Figueroa
,
G.
van der Laan
,
L. J.
Collins-McIntyre
,
G.
Cibin
,
A. J.
Dent
, and
T.
Hesjedal
, “
Local structure and bonding of transition metal dopants in Bi2Se3 topological insulator thin films
,”
J. Phys. Chem. C
119
,
17344
(
2015
).
159.
Z.
Liu
,
X.
Wei
,
J.
Wang
,
H.
Pan
,
F.
Ji
,
F.
Xi
,
J.
Zhang
,
T.
Hu
,
S.
Zhang
,
Z.
Jiang
,
W.
Wen
,
Y.
Huang
,
M.
Ye
,
Z.
Yang
, and
S.
Qiao
, “
Local structures around 3d metal dopants in topological insulator Bi2Se3 studied by EXAFS measurements
,”
Phys. Rev. B
90
,
094107
(
2014
).
160.
H.
Yang
,
A.
Liang
,
C.
Chen
,
C.
Zhang
,
N. B.
Schroeter
, and
Y.
Chen
, “
Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy
,”
Nat. Rev. Mater.
3
,
341
(
2018
).
161.
Y.
Xia
,
D.
Qian
,
D.
Hsieh
,
L.
Wray
,
A.
Pal
,
H.
Lin
,
A.
Bansil
,
D.
Grauer
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
, “
Observation of a large-gap topological-insulator class with a single dirac cone on the surface
,”
Nat. Phys.
5
,
398
(
2009
).
162.
Y. L.
Chen
,
J. G.
Analytis
,
J.-H.
Chu
,
Z. K.
Liu
,
S.-K.
Mo
,
X. L.
Qi
,
H. J.
Zhang
,
D. H.
Lu
,
X.
Dai
,
Z.
Fang
,
S. C.
Zhang
,
I. R.
Fisher
,
Z.
Hussain
, and
Z.-X.
Shen
, “
Experimental realization of a three-dimensional topological insulator Bi2Te3
,”
Science
325
,
178
(
2009
).
163.
Y. L.
Chen
,
J.-H.
Chu
,
J. G.
Analytis
,
Z. K.
Liu
,
K.
Igarashi
,
H.-H.
Kuo
,
X. L.
Qi
,
S. K.
Mo
,
R. G.
Moore
,
D. H.
Lu
,
M.
Hashimoto
,
T.
Sasagawa
,
S. C.
Zhang
,
I. R.
Fisher
,
Z.
Hussain
, and
Z. X.
Shen
, “
Massive Dirac fermion on the surface of a magnetically doped topological insulator
,”
Science
329
,
659
(
2010
).
164.
C.-Y.
Lim
,
S.
Kim
,
S. W.
Jung
,
J.
Hwang
, and
Y.
Kim
, “
Recent technical advancements in ARPES: Unveiling quantum materials
,”
Curr. Appl. Phys.
60
,
43
(
2024
).
165.
J. A.
Alexander-Webber
,
J.
Huang
,
J.
Beilsten-Edmands
,
P.
Čermák
,
Č.
Drašar
,
R. J.
Nicholas
, and
A. I.
Coldea
, “
Multi-band magnetotransport in exfoliated thin films of CuxBi2Se3
,”
J. Phys.: Condens. Matter
30
,
155302
(
2018
).
166.
J.
Huang
,
J. A.
Alexander-Webber
,
A. M. R.
Baker
,
T. J. B. M.
Janssen
,
A.
Tzalenchuk
,
V.
Antonov
,
T.
Yager
,
S.
Lara-Avila
,
S.
Kubatkin
,
R.
Yakimova
, and
R. J.
Nicholas
, “
Physics of a disordered Dirac point in epitaxial graphene from temperature-dependent magnetotransport measurements
,”
Phys. Rev. B
92
,
075407
(
2015
).
167.
H. J.
Joyce
,
J. L.
Boland
,
C. L.
Davies
,
S. A.
Baig
, and
M. B.
Johnston
, “
A review of the electrical properties of semiconductor nanowires: Insights gained from terahertz conductivity spectroscopy
,”
Semicond. Sci. Technol.
31
,
103003
(
2016
).
168.
S.
Sim
,
M.
Brahlek
,
N.
Koirala
,
S.
Cha
,
S.
Oh
, and
H.
Choi
, “
Ultrafast terahertz dynamics of hot Dirac-electron surface scattering in the topological insulator Bi2Se3
,”
Phys. Rev. B
89
,
165137
(
2014
).
169.
P. H.
Le
,
P.-T.
Liu
,
C. W.
Luo
,
J.-Y.
Lin
, and
K. H.
Wu
, “
Thickness-dependent magnetotransport properties and terahertz response of topological insulator Bi2Te3 thin films
,”
J. Alloys Compd.
692
,
972
(
2017
).
170.
L.
Ding
,
M.
Wu
,
S.
Zhou
,
L.
Zhu
,
H.
Wen
,
X.
Cheng
, and
W.
Xu
, “
Study of the surface and bulk states of Bi2Te3 topological insulators using terahertz time-domain spectroscopy
,”
Phys. Status Solidi RRL
17
,
2300008
(
2023
).
171.
V. S.
Kamboj
,
A.
Singh
,
T.
Ferrus
,
H. E.
Beere
,
L. B.
Duffy
,
T.
Hesjedal
,
C. H. W.
Barnes
, and
D. A.
Ritchie
, “
Probing the topological surface state in Bi2Se3 thin films using temperature-dependent terahertz spectroscopy
,”
ACS Photonics
4
,
2711
(
2017
).
172.
J. A.
Sobota
,
S.
Yang
,
J. G.
Analytis
,
Y. L.
Chen
,
I. R.
Fisher
,
P. S.
Kirchmann
, and
Z.-X.
Shen
, “
Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3
,”
Phys. Rev. Lett.
108
,
117403
(
2012
).
173.
A.
De
,
T. K.
Bhowmick
, and
R. K.
Lake
, “
Anomalous magneto-optical effects in an antiferromagnet–topological-insulator heterostructure
,”
Phys. Rev. Appl.
16
,
014043
(
2021
).
174.
F.
Mooshammer
,
F.
Sandner
,
M. A.
Huber
,
M.
Zizlsperger
,
H.
Weigand
,
M.
Plankl
,
C.
Weyrich
,
M.
Lanius
,
J.
Kampmeier
,
G.
Mussler
,
D.
Grützmacher
,
J. L.
Boland
,
T. L.
Cocker
, and
R.
Huber
, “
Nanoscale near-field tomography of surface states on (Bi0.5Sb0.5)2Te3
,”
Nano Lett.
18
,
7515
(
2018
).
175.
E. A. A.
Pogna
,
L.
Viti
,
A.
Politano
,
M.
Brambilla
,
G.
Scamarcio
, and
M. S.
Vitiello
, “
Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy
,”
Nat. Commun.
12
,
6672
(
2021
).
176.
D.
Johnson
,
T.
Vincent
,
X.
Liu
,
B.
Gholizadeh
,
P.
Schöenherr
,
T.
Hesjedal
,
O.
Kazakova
,
N.
Huang
, and
J.
Boland
, “
Scattering-type near-field optical microscopy characterization of topological insulator Bi2Te3 nanowires
,” in
48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
(
IEEE
,
2023
), p.
1
.
177.
G.
Romagnoli
,
E.
Marchiori
,
K.
Bagani
, and
M.
Poggio
, “
Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering
,”
Appl. Phys. Lett.
122
,
192603
(
2023
).
178.
E.
Persky
,
I.
Sochnikov
, and
B.
Kalisky
, “
Studying quantum materials with scanning SQUID microscopy
,”
Annu. Rev. Condens. Matter Phys.
13
,
385
(
2022
).
179.
T.
Wang
,
C.
Wu
,
M.
Mogi
,
M.
Kawamura
,
Y.
Tokura
,
Z.-X.
Shen
,
Y.-Z.
You
, and
M. T.
Allen
, “
Probing the edge states of Chern insulators using microwave impedance microscopy
,”
Phys. Rev. B
108
,
235432
(
2023
).
180.
S.
Kim
,
J.
Schwenk
,
D.
Walkup
,
Y.
Zeng
,
F.
Ghahari
,
S. T.
Le
,
M. R.
Slot
,
J.
Berwanger
,
S. R.
Blankenship
,
K.
Watanabe
,
F. J.
Giessibl
,
N. B.
Zhitenev
,
C. R.
Dean
, and
J. A.
Stroscio
, “
Edge channels of broken-symmetry quantum Hall states in graphene visualized by atomic force microscopy
,”
Nat. Commun.
12
,
2852
(
2021
).
181.
F.
Keilmann
and
R.
Hillenbrand
, “
Near-field microscopy by elastic light scattering from a tip
,”
Philos. Trans. R. Soc. A
362
,
787
(
2004
).
182.
G.
Dai
,
Z.
Yang
,
G.
Geng
,
M.
Li
,
T.
Chang
,
D.
Wei
,
C.
Du
,
H.-L.
Cui
, and
H.
Wang
, “
Signal detection techniques for scattering-type scanning near-field optical microscopy
,”
Appl. Spectrosc. Rev.
53
,
806
(
2018
).
183.
J.
Lloyd-Hughes
,
P. M.
Oppeneer
,
T. P.
dos Santos
,
A.
Schleife
,
S.
Meng
,
M. A.
Sentef
,
M.
Ruggenthaler
,
A.
Rubio
,
I.
Radu
,
M.
Murnane
,
X.
Shi
,
H.
Kapteyn
,
B.
Stadtmüller
,
K. M.
Dani
,
F. H.
da Jornada
,
E.
Prinz
,
M.
Aeschlimann
,
R. L.
Milot
,
M.
Burdanova
,
J.
Boland
,
T.
Cocker
, and
F.
Hegmann
, “
The 2021 ultrafast spectroscopic probes of condensed matter roadmap
,”
J. Phys.: Condens. Matter
33
,
353001
(
2021
).
184.
X.
Chen
,
D.
Hu
,
R.
Mescall
,
G.
You
,
D. N.
Basov
,
Q.
Dai
, and
M.
Liu
, “
Modern scattering-type scanning near-field optical microscopy for advanced material research
,”
Adv. Mater.
31
,
1804774
(
2019
).
185.
T.
Taubner
,
F.
Keilmann
, and
R.
Hillenbrand
, “
Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy
,”
Opt. Express
13
,
8893
(
2005
).
186.
B.
Kusnetz
,
J.
Belhassen
,
D. E.
Tranca
,
S. G.
Stanciu
,
S.-R.
Anton
,
Z.
Zalevsky
,
G. A.
Stanciu
, and
A.
Karsenty
, “
Generic arrays of surface-positioned and shallow-buried gold multi-shapes as reference samples to benchmark near-field microscopes. Part 1: Applications in s-SNOM depth imaging
,”
Results Phys.
56
,
107318
(
2024
).
187.
K.
Moon
,
H.
Park
,
J.
Kim
,
Y.
Do
,
S.
Lee
,
G.
Lee
,
H.
Kang
, and
H.
Han
, “
Subsurface nanoimaging by broadband terahertz pulse near-field microscopy
,”
Nano Lett.
15
,
549
(
2015
).
188.
A.
Cvitkovic
,
N.
Ocelic
, and
R.
Hillenbrand
, “
Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy
,”
Opt. Express
15
,
8550
(
2007
).
189.
B.
Hauer
,
A. P.
Engelhardt
, and
T.
Taubner
, “
Quasi-analytical model for scattering infrared near-field microscopy on layered systems
,”
Opt. Express
20
,
13173
(
2012
).
190.
A. S.
McLeod
,
P.
Kelly
,
M. D.
Goldflam
,
Z.
Gainsforth
,
A. J.
Westphal
,
G.
Dominguez
,
M. H.
Thiemens
,
M. M.
Fogler
, and
D. N.
Basov
, “
Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants
,”
Phys. Rev. B
90
,
085136
(
2014
).
191.
L.
Mester
,
A. A.
Govyadinov
,
S.
Chen
,
M.
Goikoetxea
, and
R.
Hillenbrand
, “
Subsurface chemical nanoidentification by nano-FTIR spectroscopy
,”
Nat. Commun.
11
,
3359
(
2020
).
192.
T.
Vincent
,
X.
Liu
,
D.
Johnson
,
L.
Mester
,
N.
Huang
,
O.
Kazakova
,
R.
Hillenbrand
, and
J. L.
Boland
, “
snompy: A package for modelling scattering-type scanning near-field optical microscopy
,” arXiv: 2405.20948 (
2024
).
193.
C.
Kastl
,
M.
Stallhofer
,
D.
Schuh
,
W.
Wegscheider
, and
A. W.
Holleitner
, “
Optoelectronic transport through quantum Hall edge states
,”
New J. Phys.
17
,
023007
(
2015
).
194.
H.
Ito
,
K.
Furuya
,
Y.
Shibata
,
S.
Kashiwaya
,
M.
Yamaguchi
,
T.
Akazaki
,
H.
Tamura
,
Y.
Ootuka
, and
S.
Nomura
, “
Near-field optical mapping of quantum Hall edge states
,”
Phys. Rev. Lett.
107
,
256803
(
2011
).
195.
S.
Mamyouda
,
H.
Ito
,
Y.
Shibata
,
S.
Kashiwaya
,
M.
Yamaguchi
,
T.
Akazaki
,
H.
Tamura
,
Y.
Ootuka
, and
S.
Nomura
, “
Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states
,”
Nano Lett.
15
,
2417
(
2015
).
196.
D.
Hu
,
C.
Luo
,
L.
Kang
,
M.
Liu
, and
Q.
Dai
, “
Few-layer hexagonal boron nitride as a shield of brittle materials for cryogenic s-SNOM exploration of phonon polaritons
,”
Appl. Phys. Lett.
120
,
161101
(
2022
).
197.
R. H. J.
Kim
,
J.-M.
Park
,
S. J.
Haeuser
,
L.
Luo
, and
J.
Wang
, “
A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM)
,”
Rev. Sci. Instrum.
94
,
043702
(
2023
).
198.
A.
Leitenstorfer
,
A. S.
Moskalenko
,
T.
Kampfrath
,
J.
Kono
,
E.
Castro-Camus
,
K.
Peng
,
N.
Qureshi
,
D.
Turchinovich
,
K.
Tanaka
,
A. G.
Markelz
,
M.
Havenith
,
C.
Hough
,
H. J.
Joyce
,
W. J.
Padilla
,
B.
Zhou
,
K.-Y.
Kim
,
X.-C.
Zhang
,
P. U.
Jepsen
,
S.
Dhillon
,
M.
Vitiello
,
E.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
R.
Lewis
,
M.
Tonouchi
,
P.
Klarskov
,
T. S.
Seifert
,
Y. A.
Gerasimenko
,
D.
Mihailovic
,
R.
Huber
,
J. L.
Boland
,
O.
Mitrofanov
,
P.
Dean
,
B. N.
Ellison
,
P. G.
Huggard
,
S. P.
Rea
,
C.
Walker
,
D. T.
Leisawitz
,
J. R.
Gao
,
C.
Li
,
Q.
Chen
,
G.
Valušis
,
V. P.
Wallace
,
E.
Pickwell-MacPherson
,
X.
Shang
,
J.
Hesler
,
N.
Ridler
,
C. C.
Renaud
,
I.
Kallfass
,
T.
Nagatsuma
,
J. A.
Zeitler
,
D.
Arnone
,
M. B.
Johnston
, and
J.
Cunningham
, “
The 2023 terahertz science and technology roadmap
,”
J. Phys. D: Appl. Phys.
56
,
223001
(
2023
).
199.
A. A.
Govyadinov
,
I.
Amenabar
,
F.
Huth
,
P. S.
Carney
, and
R.
Hillenbrand
, “
Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy
,”
J. Phys. Chem. Lett.
4
,
1526
(
2013
).
200.
X.
Chen
,
R.
Ren
, and
M.
Liu
, “
Validity of machine learning in the quantitative analysis of complex scanning near-field optical microscopy signals using simulated data
,”
Phys. Rev. Appl.
15
,
014001
(
2021
).
201.
J.
Brun-Picard
,
S.
Djordjevic
,
D.
Leprat
,
F.
Schopfer
, and
W.
Poirier
, “
Practical quantum realization of the ampere from the elementary charge
,”
Phys. Rev. X
6
,
041051
(
2016
).
202.
L. K.
Rodenbach
,
N. T. M.
Tran
,
J. M.
Underwood
,
A. R.
Panna
,
M. P.
Andersen
,
Z. S.
Barcikowski
,
S. U.
Payagala
,
P.
Zhang
,
L.
Tai
,
K. L.
Wang
,
R. E.
Elmquist
,
D. G.
Jarrett
,
D. B.
Newell
,
A. F.
Rigosi
, and
D.
Goldhaber-Gordon
, “
Realization of the quantum ampere using the quantum anomalous Hall and Josephson effects
,” arXiv:2308.00200 (
2023
).
203.
W.
Poirier
and
F.
Schopfer
, “
Resistance metrology based on the quantum Hall effect
,”
Eur. Phys. J. Spec. Top.
172
,
207
(
2009
).
204.
B.
Jeckelmann
and
B.
Jeanneret
, “
The quantum Hall effect as an electrical resistance standard
,”
Rep. Prog. Phys.
64
,
1603
(
2001
).
205.
F.
Delahaye
and
B.
Jeckelmann
, “
Revised technical guidelines for reliable dc measurements of the quantized Hall resistance
,”
Metrologia
40
,
217
(
2003
).
206.
BIPM Key Comparison Database
, “
Expanded relative uncertainties for resistance calibration services of more than 10 institutes are within 3 to 100 parts in
109,” BIPM.EM-K12 (2021).
207.
D.
Drung
,
M.
Götz
,
E.
Pesel
,
J.-H.
Storm
,
C.
Aßmann
,
M.
Peters
, and
T.
Schurig
, “
Improving the stability of cryogenic current comparator setups
,”
Supercond. Sci. Technol.
22
,
114004
(
2009
).
208.
M.
Götz
,
D.
Drung
,
E.
Pesel
,
H.-J.
Barthelmess
,
C.
Hinnrichs
,
C.
Assmann
,
M.
Peters
,
H.
Scherer
,
B.
Schumacher
, and
T.
Schurig
, “
Improved cryogenic current comparator setup with digital current sources
,”
IEEE Trans. Instrum. Meas.
58
,
1176
(
2009
).
209.
D.
Drung
and
J.-H.
Storm
, “
Ultralow-noise chopper amplifier with low input charge injection
,”
IEEE Trans. Instrum. Meas.
60
,
2347
(
2011
).
210.
D.
Drung
,
M.
Götz
,
E.
Pesel
, and
H.
Scherer
, “
Improving the traceable measurement and generation of small direct currents
,”
IEEE Trans. Instrum. Meas.
64
,
3021
(
2015
).
211.
D. K.
Patel
,
K. M.
Fijalkowski
,
M.
Kruskopf
,
N.
Liu
,
M.
Götz
,
E.
Pesel
,
M.
Jaime
,
M.
Klement
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
,
L. W.
Molenkamp
, and
H.
Scherer
, “
Temperature dependence of a quantum resistance standard at zero external magnetic field
,” in
IMEKO 2024 XXIV World Congress
,
Hamburg, Germany
(
2024
).
212.
B.
Jeckelmann
,
A.
Rufenacht
,
B.
Jeanneret
,
F.
Overney
,
K.
Pierz
,
A.
von Campenhausen
, and
G.
Hein
, “
Optimization of QHE-devices for metrological applications
,”
IEEE Trans. Instrum. Meas.
50
,
218
(
2001
).
213.
F.
Delahaye
, “
Series and parallel connection of multiterminal quantum Hall-effect devices
,”
J. Appl. Phys.
73
,
7914
(
1993
).
214.
M.
Kruskopf
,
A. F.
Rigosi
,
A. R.
Panna
,
D. K.
Patel
,
H.
Jin
,
M.
Marzano
,
M.
Berilla
,
D. B.
Newell
, and
R. E.
Elmquist
, “
Two-terminal and multi-terminal designs for next-generation quantized Hall resistance standards: Contact material and geometry
,”
IEEE Trans. Electron Devices
66
,
3973
(
2019
).
215.
M. E.
Cage
,
B. F.
Field
,
R. F.
Dziuba
,
S. M.
Girvin
,
A. C.
Gossard
, and
D. C.
Tsui
, “
Temperature dependence of the quantum Hall resistance
,”
Phys. Rev. B
30
,
2286
(
1984
).
216.
M.
D'Iorio
and
B.
Wood
, “
Temperature dependence of the quantum hall resistance
,”
Surf. Sci.
170
,
233
(
1986
).
217.
F.
Delahaye
,
D.
Dominguez
,
F.
Alexandre
,
J. P.
Andre
,
J. P.
Hirtz
, and
M.
Razeghi
, “
Precise quantized Hall resistance measurements in GaAs/AlxGa1−xAs and InxGa1−xAs/InP heterostructures
,”
Metrologia
22
,
103
(
1986
).
218.
K.
Yoshihiro
,
J.
Kinoshita
,
K.
Inagaki
,
C.
Yamanouchi
,
T.
Endo
,
Y.
Murayama
,
M.
Koyanagi
,
A.
Yagi
,
J.
Wakabayashi
, and
S.
Kawaji
, “
Quantum Hall effect in silicon metal-oxide-semiconductor inversion layers: Experimental conditions for determination of h/e2
,”
Phys. Rev. B
33
,
6874
(
1986
).
219.
M.
Furlan
, “
Electronic transport and the localization length in the quantum Hall effect
,”
Phys. Rev. B
57
,
14818
(
1998
).
220.
A.
Hartland
, “
The quantum Hall effect and resistance standards
,”
Metrologia
29
,
175
(
1992
).
221.
F.
Schopfer
and
W.
Poirier
, “
Quantum resistance standard accuracy close to the zero-dissipation state
,”
J. Appl. Phys.
114
,
064508
(
2013
).
222.
F.
Lafont
,
R.
Ribeiro-Palau
,
D.
Kazazis
,
A.
Michon
,
O.
Couturaud
,
C.
Consejo
,
T.
Chassagne
,
M.
Zielinski
,
M.
Portail
,
B.
Jouault
et al, “
Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide
,”
Nat. Commun.
6
,
6806
(
2015
).
223.
T.
Hesjedal
, “
Rare earth doping of topological insulators: A brief review of thin film and heterostructure systems
,”
Phys. Status Solidi A
216
,
1800726
(
2019
).
224.
European Joint Research Project
, see https://sites.google.com/inrim.it/quahmet for “
23FUN07 QuAHMET (Quantum anomalous Hall effect materials and devices for metrology)
”.
You do not currently have access to this content.