Microparticle sorting is crucial for applications in biomedicine, environmental monitoring, and biochip technology. However, traditional optical sorting methods often rely on external equipment, such as microfluidic devices. In this Letter, we proposed a phase-gradient force-based optical array sorting (POAS) scheme, which achieves the accurate transporting and sorting of the particles by regulating the phase-gradient force based on the physical characteristics of the particles. The method combines the function of particle transporting and sorting, eliminating the need for external auxiliary equipment. Based on the POAS scheme, we used the complex amplitude beam shaping algorithms to design a 1 × 2 array sorting beam with the controllable phase-gradient forces. The array sorting beam was used to experimentally sort two kinds of particles with different sizes, and the particles are first transported and then precisely sorted at the designated sorting nodes. All the parameters of the sorting beam were adjustable, which greatly enhances the flexibility and scalability of the optical sorting technology. This study provides an alternative scheme for the high-throughput particle sorting, which can be easily integrated into the optical sorting chips for applications in medical detection and drug delivery.

1.
N.
Lu
,
H. M.
Tay
,
C.
Petchakup
,
L.
He
,
L.
Gong
,
K. K.
Maw
,
S. Y.
Leong
,
W. W.
Lok
,
H. B.
Ong
,
R.
Guo
,
K. H. H.
Li
, and
H. W.
Hou
, “
Label-free microfluidic cell sorting and detection for rapid blood analysis
,”
Lab Chip
23
,
1226
1257
(
2023
).
2.
M.
Alshareef
,
N.
Metrakos
,
E. J.
Perez
,
F.
Azer
,
F.
Yang
,
X.
Yang
, and
G.
Wang
, “
Separation of tumor cells with dielectrophoresis-based microfluidic chip
,”
Biomicrofluidics
7
,
011803
(
2013
).
3.
S.
Rajauria
,
C.
Axline
,
C.
Gottstein
, and
A. N.
Cleland
, “
High-speed discrimination and sorting of submicron particles using a microfluidic device
,”
Nano Lett.
15
,
469
475
(
2015
).
4.
H.-D.
Xi
,
H.
Zheng
,
W.
Guo
,
A. M.
Ganan-Calvo
,
Y.
Ai
,
C.-W.
Tsao
,
J.
Zhou
,
W.
Li
,
Y.
Huang
,
N.
Nam-Trung
, and
S. H.
Tan
, “
Active droplet sorting in microfluidics: a review
,”
Lab Chip
17
,
751
771
(
2017
).
5.
P. Y.
Chiou
,
A. T.
Ohta
, and
M. C.
Wu
, “
Massively parallel manipulation of single cells and microparticles using optical images
,”
Nature
436
,
370
372
(
2005
).
6.
M.
Wu
,
A.
Ozcelik
,
J.
Rufo
,
Z.
Wang
,
R.
Fang
, and
T. J.
Huang
, “
Acoustofluidic separation of cells and particles
,”
Microsyst. Nanoeng.
5
,
32
50
(
2019
).
7.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
290
(
1986
).
8.
Y. X.
Wu
,
S. D.
Zhao
,
G. Z.
Dai
, and
S. H.
Tao
, “
Optical force-induced nanowire cut
,”
J. Phys. Chem. Lett.
13
,
11899
11904
(
2022
).
9.
S. B.
Cheng
,
T.
Xia
,
M. S.
Liu
,
S.
Xu
,
S. F.
Gao
,
G.
Zhang
, and
S. H.
Tao
, “
Optical manipulation of microparticles with the momentum flux transverse to the optical axis
,”
Opt. Laser Technol.
113
,
266
272
(
2019
).
10.
M. P.
MacDonald
,
G. C.
Spalding
, and
K.
Dholakia
, “
Microfluidic sorting in an optical lattice
,”
Nature
426
,
421
424
(
2003
).
11.
Y. Y.
Sun
,
X. C.
Yuan
,
L. S.
Ong
,
J.
Bu
,
S. W.
Zhu
, and
R.
Liu
, “
Large-scale optical traps on a chip for optical sorting
,”
Appl. Phys. Lett.
90
,
031107
(
2007
).
12.
X. C.
Yuan
,
S. W.
Zhu
,
J.
Bu
,
Y. Y.
Sun
,
J.
Lin
, and
B. Z.
Gao
, “
Large-angular separation of particles induced by cascaded deflection angles in optical sorting
,”
Appl. Phys. Lett.
93
,
263901
(
2008
).
13.
B.
Ma
,
B.
Yao
,
F.
Peng
,
S.
Yan
,
M.
Lei
, and
R.
Rupp
, “
Optical sorting of particles by dual-channel line optical tweezers
,”
J. Opt.
14
,
105702
(
2012
).
14.
R.
Ali
,
R. S.
Dutra
,
F. A.
Pinheiro
, and
P. A. M.
Neto
, “
Enantioselection and chiral sorting of single microspheres using optical pulling forces
,”
Opt. Lett.
46
,
1640
1643
(
2021
).
15.
B. H.
Wunsch
,
J. T.
Smith
,
S. M.
Gifford
,
C.
Wang
,
M.
Brink
,
R. L.
Bruce
,
R. H.
Austin
,
G.
Stolovitzky
, and
Y.
Astier
, “
Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm
,”
Nat. Nanotechnol.
11
,
936
940
(
2016
).
16.
H.
Zhao
,
L. K.
Chin
,
Y.
Shi
,
P. Y.
Liu
,
Y.
Zhang
,
H.
Cai
,
E. P. H.
Yap
,
W.
Ser
, and
A.-Q.
Liu
, “
Continuous optical sorting of nanoscale biomolecules in integrated microfluidic-nanophotonic chips
,”
Sens. Actuators, B
331
,
129428
(
2021
).
17.
H.
Zheng
,
X.
Li
,
J.
Ng
,
H.
Chen
, and
Z.
Lin
, “
Tailoring the gradient and scattering forces for longitudinal sorting of generic-size chiral particles
,”
Opt. Lett.
45
,
4515
4518
(
2020
).
18.
Y.
Roichman
,
B.
Sun
,
Y.
Roichman
,
J.
Amato-Grill
, and
D. G.
Grier
, “
Optical forces arising from phase gradients
,”
Phys. Rev. Lett.
100
,
013602
(
2008
).
19.
D. G.
Grier
, “
A revolution in optical manipulation
,”
Nature
424
,
810
816
(
2003
).
20.
K.
Niu
,
D. J.
Bao
, and
S. H.
Tao
, “
Transportation of dielectric particles along illumination pattern with bend and phase gradient
,”
Opt. Commun.
458
,
124842
(
2020
).
21.
K.
Niu
,
S. D.
Zhao
,
S. H.
Tao
, and
F. L.
Wang
, “
Long distance and direction-controllable conveyor for automatic particle transportation based on optical tweezers
,”
Sens. Actuators, A
333
,
113223
(
2022
).
22.
Y. X.
Wu
,
Y.
Xiang
,
S. D.
Zhao
,
G. Z.
Dai
, and
S. H.
Tao
, “
Auto-alignment of CdS nanowires via optical tweezers
,”
Appl. Phys. A
128
,
200
(
2022
).
23.
S. H.
Tao
,
X. C.
Yuan
,
J.
Lin
,
X.
Peng
, and
H. B.
Niu
, “
Fractional optical vortex beam induced rotation of particles
,”
Opt. Express
13
,
7726
7731
(
2005
).
24.
B.
Xu
,
J.
Shuai
,
S.
Wang
,
J.
Wei
,
X.
Yang
,
X.
Xu
,
X.
Fang
,
L.
Zhou
,
K.
Wang
, and
L.
Zhang
, “
A particle sorting scheme based on an optical vortex array
,”
Laser Phys.
32
,
046201
(
2022
).
25.
C. S.
Guo
,
Y. N.
Yu
, and
Z. P.
Hong
, “
Optical sorting using an array of optical vortices with fractional topological charge
,”
Opt. Commun.
283
,
1889
1893
(
2010
).
26.
F.
Nan
and
Z.
Yan
, “
Creating multifunctional optofluidic potential wells for nanoparticle manipulation
,”
Nano Lett.
18
,
7400
7406
(
2018
).
27.
X.
Li
,
H.
Zhang
,
Y.
Gao
,
G.
Gbur
,
Y.
Cai
, and
Y.
Yuan
, “
Massive parallel sorting of particles using unwound polygonal vortex beams
,”
Front. Phys.
10
,
877804
(
2022
).
28.
X.
Wang
,
M.
Wu
,
B.
Ni
,
Z.
Peng
,
D. O. N. G.
Shen
, and
Z.-G.
Zheng
, “
Collecting, transporting and sorting micro-particles via the optical slings generated by a liquid crystal q(φ)-plate
,”
Opt. Express
31
,
5736
5746
(
2023
).
29.
X.
Tang
,
Y.
Kuai
,
Z.
Fan
,
F.
Lu
,
H.
Zang
,
J.
Chen
,
Q.
Zhan
, and
D.
Zhang
, “
Achiral and chiral optical force within topological optical lattices generated with plasmonic metasurfaces and tunable incident beam
,”
Phys. Rev. Appl.
19
,
054016
(
2023
).
30.
F.
Nan
and
Z.
Yan
, “
Synergy of intensity, phase, and polarization enables versatile optical nanomanipulation
,”
Nano Lett.
20
,
2778
2783
(
2020
).
31.
M. M.
Shanei
,
E.
Engay
, and
M.
Kaell
, “
Light-driven transport of microparticles with phase-gradient metasurfaces
,”
Opt. Lett.
47
,
6428
6431
(
2022
).
32.
F.
Nan
and
Z.
Yan
, “
Sorting metal nanoparticles with dynamic and tunable optical driven forces
,”
Nano Lett.
18
,
4500
4505
(
2018
).
33.
F.
Nan
and
Z.
Yan
, “
Optical sorting at the single-particle level with single-nanometer precision using coordinated intensity and phase gradient forces
,”
ACS Nano
14
,
7602
7609
(
2020
).
34.
Y. P.
Tai
,
W. J.
Wei
,
H.
Zhang
,
H. X.
Ma
, and
X. Z.
Li
, “
Particle aggregation/disaggregation and sorting using woven spiral beams
,”
Appl. Phys. Lett.
123
,
191109
(
2023
).
35.
Q.
Zhou
,
T.
Xia
,
W.
Liao
,
Y.
Liu
,
D. P.
Lin
,
J. H.
Yang
, and
S. H.
Tao
, “
Microparticle sorting with a virtual optical chip
,”
Rev. Sci. Instrum.
92
,
053201
(
2021
).
36.
Y. Z.
Shi
,
X. H.
Xu
,
M.
Nieto-Vesperinas
,
Q. H.
Song
,
A. Q.
Liu
,
G.
Cipparrone
,
Z. P.
Su
,
B.
Yao
,
Z.
Wang
,
C.-W.
Qiu
, and
X. B.
Cheng
, “
Advances in light transverse momenta and optical lateral forces
,”
Adv. Opt. Photonics
15
,
835
906
(
2023
).
37.
Z. Z.
Yuan
and
S. H.
Tao
, “
Generation of phase-gradient optical beams with an iterative algorithm
,”
J. Opt.
16
,
105701
(
2014
).
38.
S. H.
Tao
and
W. X.
Yu
, “
Beam shaping of complex amplitude with separate constraints on the output beam
,”
Opt. Express
23
,
1052
1062
(
2015
).
39.
L.
Wu
,
S. B.
Cheng
, and
S. H.
Tao
, “
Simultaneous shaping of amplitude and phase of light in the entire output plane with a phase-only hologram
,”
Sci. Rep.
5
,
15426
(
2015
).
40.
D. B.
Ruffner
and
D. G.
Grier
, “
Optical forces and torques in nonuniform beams of light
,”
Phys. Rev. Lett.
108
,
173602
(
2012
).
41.
L.
Zhu
,
M.
Tang
,
H.
Li
,
Y.
Tai
, and
X.
Li
, “
Optical vortex lattice: An exploitation of orbital angular momentum
,”
Nanophotonics
10
,
2487
2496
(
2021
).
42.
S. E. S.
Spesyvtseva
,
S.
Shoji
, and
S.
Kawata
, “
Chirality-selective optical scattering force on single-walled carbon nanotubes
,”
Phys. Rev. Appl.
3
,
044003
(
2015
).
43.
C.
Pin
,
R.
Otsuka
, and
K.
Sasaki
, “
Optical transport and sorting of fluorescent nanodiamonds inside a tapered glass capillary: optical sorting of nanomaterials at the femto-Newton scale
,”
ACS Appl. Nano Mater.
3
,
4127
4134
(
2020
).
You do not currently have access to this content.