Deep mesa is an effective edge termination widely deployed in high-voltage power devices. However, its effectiveness requires the minimal distance between mesa and electrode edge and is susceptible to charges in the dielectric passivation, posing challenges in practical implementation. Here, we propose a deep mesa termination encapsulated by p-type materials, which functions as a reduced-surface-field (RESURF) structure and enables a wide design and process window. We demonstrate the RESURF-mesa design in vertical Ga3O3 diodes. In this design, a 5 μm deep mesa, which is intentionally not aligned with the anode edge, is encapsulated by p-type nickel oxide (NiO). This termination has been applied to devices on three Ga2O3 wafers with epitaxial doping concentrations ranging from 1.2 × 1016 to 5 × 1016 cm−3, enabling an average one-dimensional junction field of 4.2–4.4 MV/cm in all wafers. Additionally, the diode with 1.2 × 1016 cm−3 doping achieves a specific on-resistance (RON,sp) of 4.05 mΩ·cm2 and a breakdown voltage of 3214 V, resulting in a power figure of merit of 2.55 GW/cm2, which is among the highest in multi-kilovolt β-Ga2O3 diodes. The above results demonstrate the RESURF-mesa termination as a versatile and effective solution for wide bandgap and ultra-wide bandgap power devices.

1.
Y.
Zhang
,
F.
Udrea
, and
H.
Wang
, “
Multidimensional device architectures for efficient power electronics
,”
Nat. Electron.
5
(
11
),
723
734
(
2022
).
2.
H.
Wang
,
C.
Wang
,
B.
Wang
,
N.
Ren
, and
K.
Sheng
, “
4H-SiC super-junction JFET: Design and experimental demonstration
,”
IEEE Electron Device Lett.
41
(
3
),
445
448
(
2020
).
3.
H.
Wang
,
C.
Wang
,
B.
Wang
,
H.
Long
, and
K.
Sheng
, “
Hybrid termination with wide trench for 4H-SiC super-junction devices
,”
IEEE Electron Device Lett.
42
(
2
),
216
219
(
2021
).
4.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
(
1
),
011301
(
2018
).
5.
Y.
Ma
,
M.
Porter
,
Y.
Qin
,
J.
Spencer
,
Z.
Du
,
M.
Xiao
,
Y.
Wang
,
I.
Kravchenko
,
D. P.
Briggs
,
D. K.
Hensley
,
F.
Udrea
,
M.
Tadjer
,
H.
Wang
, and
Y.
Zhang
, “
1 kV self-aligned vertical GaN superjunction diode
,”
IEEE Electron Device Lett.
45
(
1
),
12
15
(
2024
).
6.
Y.
Qin
,
M.
Xiao
,
R.
Zhang
,
Q.
Xie
,
T.
Palacios
,
B.
Wang
,
Y.
Ma
,
I.
Kravchenko
,
D. P.
Briggs
,
D. K.
Hensley
,
B. R.
Srijanto
, and
Y.
Zhang
, “
1 kV GaN-on-Si quasi-vertical Schottky rectifier
,”
IEEE Electron Device Lett.
44
(
7
),
1052
1055
(
2023
).
7.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
, “
A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3
,”
Appl. Phys. Rev.
9
(
1
),
011315
(
2022
).
8.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Recent progress in Ga2O3 power devices
,”
Semicond. Sci. Technol.
31
(
3
),
034001
(
2016
).
9.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
, “
Ultra-wide bandgap semiconductor Ga2O3 power diodes
,”
Nat. Commun.
13
(
1
),
3900
(
2022
).
10.
Y.
Qin
,
M.
Xiao
,
M.
Porter
,
Y.
Ma
,
J.
Spencer
,
Z.
Du
,
A.
Jacobs
,
K.
Sasaki
,
H.
Wang
,
M.
Tadjer
, and
Y.
Zhang
, “
10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 °C
,”
IEEE Electron Device Lett.
44
(
8
),
1268
1271
(
2023
).
11.
R.
Sharma
,
M.
Xian
,
C.
Fares
,
M. E.
Law
,
M.
Tadjer
,
K. D.
Hobart
,
F.
Ren
, and
S. J.
Pearton
, “
Effect of probe geometry during measurement of >100 A Ga2O3 vertical rectifiers
,”
J. Vac. Sci. Technol., A
39
(
1
),
013406
(
2021
).
12.
M.
Xiao
,
B.
Wang
,
J.
Liu
,
R.
Zhang
,
Z.
Zhang
,
C.
Ding
,
S.
Lu
,
K.
Sasaki
,
G.-Q.
Lu
,
C.
Buttay
, and
Y.
Zhang
, “
Packaged Ga2O3 Schottky rectifiers with over 60-A surge current capability
,”
IEEE Trans. Power Electron.
36
(
8
),
8565
8569
(
2021
).
13.
B.
Wang
,
M.
Xiao
,
J.
Knoll
,
C.
Buttay
,
K.
Sasaki
,
G.-Q.
Lu
,
C.
Dimarino
, and
Y.
Zhang
, “
Low thermal resistance (0.5 K/W) Ga2O3 Schottky rectifiers with double-side packaging
,”
IEEE Electron Device Lett.
42
(
8
),
1132
1135
(
2021
).
14.
K.
Zeng
,
R.
Soman
,
Z.
Bian
,
S.
Jeong
, and
S.
Chowdhury
, “
Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer
,”
IEEE Electron Device Lett.
43
(
9
),
1527
1530
(
2022
).
15.
Y.
Ma
,
X.
Zhou
,
W.
Tang
,
X.
Zhang
,
G.
Xu
,
L.
Zhang
,
T.
Chen
,
S.
Dai
,
C.
Bian
,
B.
Li
,
Z.
Zeng
, and
S.
Long
, “
702.3 A·cm−2/10.4 mΩ·cm2 β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation
,”
IEEE Electron Device Lett.
44
(
3
),
384
387
(
2023
).
16.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
1-kV vertical Ga2O3 field plated Schottky barrier diodes
,”
Appl. Phys. Lett.
110
(
10
),
103506
(
2017
).
17.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H.
Xing
, “
Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2
,”
IEEE Electron Device Lett.
41
(
1
),
107
110
(
2020
).
18.
Q.
He
,
X.
Zhou
,
Q.
Li
,
W.
Hao
,
Q.
Liu
,
Z.
Han
,
K.
Zhou
,
C.
Chen
,
J.
Peng
,
G.
Xu
,
X.
Zhao
,
X.
Wu
, and
S.
Long
, “
Selective high-resistance zones formed by oxygen annealing for GaO Schottky diode applications
,”
IEEE Electron Device Lett.
43
(
1
),
1933
1936
(
2022
).
19.
C.
Lin
,
Y.
Yuda
,
M. H.
Wong
,
M.
Sato
,
N.
Takekawa
,
K.
Konishi
,
T.
Watahiki
,
M.
Yamamuka
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation
,”
IEEE Electron Device Lett.
40
(
9
),
1487
1490
(
2019
).
20.
Y.
Feng
,
H.
Zhou
,
S.
Alghamdi
,
H.
Fang
,
X.
Zhang
,
Y.
Chen
,
G.
Tian
,
S.
Wasly
,
Y.
Hao
, and
J.
Zhang
, “
1.56 kV/30 A vertical β-Ga2O3 Schottky barrier diodes with composite edge terminations
,”
Sci. China Inf. Sci.
(to be published).
21.
S.
Roy
,
A.
Bhattacharyya
,
P.
Ranga
,
H.
Splawn
,
J.
Leach
, and
S.
Krishnamoorthy
, “
High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga's figure of merit over 1 GW/cm2
,”
IEEE Electron Device Lett.
42
(
8
),
1140
1143
(
2021
).
22.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate
,”
Appl. Phys. Lett.
122
(
15
),
152101
(
2023
).
23.
E.
Farzana
,
S.
Roy
,
N.
Hendricks
,
S.
Krishnamoorthy
, and
J.
Speck
, “
Vertical PtOx/Pt/β-Ga2O3 Schottky diodes with high permittivity dielectric field plate for low leakage and high breakdown voltage
,”
Appl. Phys. Lett.
123
(
19
),
192102
(
2023
).
24.
S.
Roy
,
B.
Kostroun
,
J.
Cooke
,
Y.
Liu
,
A.
Bhattacharyya
,
C.
Peterson
,
B.
Sensale-Rodriguez
, and
S.
Krishnamoorthy
, “
Ultra-low reverse leakage in large area kilo-volt class β-Ga2O3 trench Schottky barrier diode with high-k dielectric RESURF
,”
Appl. Phys. Lett.
123
(
24
),
243502
(
2023
).
25.
S.
Dhara
,
N. K.
Kalarickal
,
A.
Dheenan
,
C.
Joishi
, and
S.
Rajan
, “
β-Ga2O3 Schottky barrier diodes with 4.1 MV/cm field strength by deep plasma etching field-termination
,”
Appl. Phys. Lett.
121
(
20
),
203501
(
2022
).
26.
Z.
Han
,
G.
Jian
,
X.
Zhou
,
Q.
He
,
W.
Hao
,
J.
Liu
,
B.
Li
,
H.
Huang
,
Q.
Li
,
X.
Zhao
,
G.
Xu
, and
S.
Long
, “
2.7 kV low leakage vertical PtOx/β-Ga2O3 Schottky barrier diodes with self-aligned mesa termination
,”
IEEE Electron Device Lett.
44
(
10
),
1680
1683
(
2023
).
27.
J.
Wan
,
H.
Wang
,
C.
Wang
,
H.
Chen
,
C.
Zhang
,
L.
Zhang
,
Y.
Li
, and
K.
Sheng
, “
2.5kV/3.78mΩ⋅cm2 low forward voltage vertical β-Ga2O3 Schottky rectifier with field plate assisted deep mesa termination
,”
IEEE Electron Device Lett.
45
(
5
),
778
781
(
2024
).
28.
J.
Wan
,
H.
Wang
,
C.
Zhang
,
Y.
Li
,
C.
Wang
,
H.
Cheng
,
J.
Li
,
N.
Ren
,
Q.
Guo
, and
K.
Sheng
, “
3.3 kV-class NiO/β-Ga2O3 heterojunction diode and its off-state leakage mechanism
,”
Appl. Phys. Lett.
124
(
24
),
243504
(
2024
).
29.
J.
Wan
,
H.
Wang
,
H.
Cheng
,
C.
Wang
,
Q.
Que
,
Y.
Li
,
C.
Zhang
,
J.
Sun
,
D.
Liu
, and
K.
Sheng
, “
2kV low leakage vertical NiO/β-Ga2O3 hetero-junction diode and its thermal/electrical stability
,” in
36th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2024
), pp.
200
203
.
30.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
, “
6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC
,”
IEEE Electron Device Lett.
43
(
5
),
765
768
(
2022
).
31.
B.
Wang
,
M.
Xiao
,
J.
Spencer
,
Y.
Qin
,
K.
Sasaki
,
M.
Tadjer
, and
Y.
Zhang
, “
2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension
,”
IEEE Electron Device Lett.
44
(
2
),
221
224
(
2023
).
32.
W.
Hao
,
F.
Wu
,
W.
Li
,
G.
Xu
,
X.
Xie
,
K.
Zhou
,
W.
Guo
,
X.
Zhou
,
Q.
He
,
X.
Zhao
,
S.
Yang
, and
S.
Long
, “
Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension
,”
IEEE Trans. Electron Devices
70
(
4
),
2129
2134
(
2023
).
33.
M.
Xiao
,
B.
Wang
,
J.
Spencer
,
Y.
Qin
,
M.
Porter
,
Y.
Ma
,
Y.
Wang
,
K.
Sasaki
,
M.
Tadjer
, and
Y.
Zhang
, “
NiO junction termination extension for high-voltage (>3 kV) Ga2O3 devices
,”
Appl. Phys. Lett.
122
(
18
),
183501
(
2023
).
34.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, “
Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
12.4.1
12.4.4
.
35.
W.
Yang
,
H.
Feng
,
X.
Fang
,
Y.
Liu
,
Y.
Onozawa
,
H.
Tanaka
, and
J.
Sin
, “
Design and characterization of sloped-field-plate enhanced trench edge termination
,”
IEEE Trans. Electron Devices
64
(
3
),
728
734
(
2017
).
36.
Y.
Qin
,
M.
Porter
,
M.
Xiao
,
Z.
Du
,
H.
Zhang
,
Y.
Ma
,
J.
Spencer
,
B.
Wang
,
Q.
Song
,
K.
Sasaki
,
C.-H.
Lin
,
I.
Kravchenko
,
D. P.
Briggs
,
D. K.
Hensley
,
M.
Tadjer
,
H.
Wang
, and
Y.
Zhang
, “
2 kV, 0.7 mΩ cm2 vertical Ga2O3 superjunction Schottky rectifier with dynamic robustness
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2023
), pp.
1
4
.
37.
Y.
Ma
,
Y.
Qin
,
M.
Porter
,
J.
Spencer
,
Z.
Du
,
M.
Xiao
,
B.
Wang
,
Y.
Wang
,
A.
Jacobs
,
H.
Wang
,
M.
Tadjer
, and
Y.
Zhang
, “
Wide-bandgap nickel oxide with tunable acceptor concentration for multidimensional power devices
,”
Adv. Electron. Mater.
9
(
12
),
2300662
(
2023
).
38.
Q.
Yan
,
H.
Gong
,
H.
Zhou
,
J.
Zhang
,
J.
Ye
,
Z.
Liu
,
C.
Wang
,
X.
Zheng
,
R.
Zhang
, and
Y.
Hao
, “
Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination
,”
Appl. Phys. Lett.
120
(
9
),
092106
(
2022
).
39.
A.
Fiedler
,
R.
Schewski1
,
Z.
Galazka
, and
K.
Irmscher
, “
Static dielectric constant of β-Ga2O3 perpendicular to the principal planes (100), (010), and (001)
,”
ECS J. Solid State Sci. Technol.
8
(
7
),
Q3083
(
2019
).
40.
Y.
Qin
,
Y.
Ma
,
M.
Xiao
,
M.
Porter
,
F.
Udrea
,
H.
Wang
, and
Y.
Zhang
, “
(Ultra-)wide-bandgap heterogeneous superjunction: Design, performance limit, and experimental demonstration
,”
IEEE Trans. Electron Devices
72
(
1
),
119
127
(
2025
).
41.
N.
Allen
,
M.
Xiao
,
X.
Yan
,
K.
Sasaki
,
M. J.
Tadjer
,
J.
Ma
,
R.
Zhang
,
H.
Wang
, and
Y.
Zhang
, “
Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: A Baliga's figure-of merit of 0.6 GW/cm2
,”
IEEE Electron Device Lett.
40
(
9
),
1399
1402
(
2019
).
42.
J.
Li
,
C.
Chiang
,
X.
Xia
,
T.
Yoo
,
F.
Ren
,
H.
Kim
, and
S.
Pearton
, “
Demonstration of 4.7 kV breakdown voltage in NiO/β-Ga2O3 vertical rectifiers
,”
Appl. Phys. Lett.
121
(
4
),
042105
(
2022
).
43.
W.
Hao
,
Q.
He
,
X.
Zhou
,
X.
Zhao
,
G.
Xu
, and
S.
Long
, “
2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability
,” in
34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2024
), pp.
105
108
.
44.
Y.
Wang
,
H.
Gong
,
Y.
Lv
,
X.
Fu
,
S.
Dun
,
T.
Han
,
H.
Liu
,
X.
Zhou
,
S.
Liang
,
J.
Ye
,
R.
Zhang
,
A.
Bu
,
S.
Cai
, and
Z.
Feng
, “
2.41 kV vertical P-NiO/n-Ga2O3 heterojunction diodes with a record Baliga's figure-of-merit of 5.18 GW/cm2
,”
IEEE Trans. Power Electron.
37
(
4
),
3743
3746
(
2022
).
45.
F.
Zhou
,
H.
Gong
,
Z.
Wang
,
W.
Xu
,
X.
Yu
,
Y.
Yang
,
F.
Ren
,
S.
Gu
,
R.
Zhang
,
Y.
Zheng
,
H.
Lu
, and
J.
Ye
, “
Over 1.8 GW/cm2 beveled-mesa NiO/β-Ga2O3 heterojunction diode with 800 V/10 A nanosecond switching capability
,”
Appl. Phys. Lett.
119
(
26
),
262103
(
2021
).
You do not currently have access to this content.