Recently, two-dimensional tungsten diselenide (WSe2) has attracted extensive attention due to their unique properties, exhibiting excellent properties in electronics, optoelectronics, and valleytronics. However, the limited light absorption efficiency of monolayer WSe2 severely hinders its practical applications. To address this challenge, vertical Te-WSe2 heterojunctions consisting of Te nanomesh and monolayer WSe2 nanofilm have been prepared using the two-step vapor deposition method, which significantly enhances the optoelectronic performance. Te-WSe2 heterojunction photodetector exhibits a high responsivity of 1.3 A/W and a specific detectivity of 1 × 1010 Jones under the irradiation of 460 nm light source. This study demonstrates the controllable fabrication of large-scale of Te-WSe2 vertical heterojunctions. The underlying mechanism for the performance enhancement of Te-WSe2 heterojunction photodetector was elucidated based on the Ohm-like type-I band-aligned structure. The research can be further extended to other Te-based mixed-dimensional heterojunctions, providing valuable theoretical and experimental support for the application of next-generation integrated optoelectronic devices.

1.
S.
Manzeli
,
D.
Ovchinnikov
,
D.
Pasquier
,
O. V.
Yazyev
, and
A.
Kis
,
Nat. Rev. Mater.
2
(
8
),
17033
(
2017
).
2.
F.
Li
,
B.
Xu
,
W.
Yang
,
Z.
Qi
,
C.
Ma
,
Y.
Wang
,
X.
Zhang
,
Z.
Luo
,
D.
Liang
,
D.
Li
,
Z.
Li
, and
A.
Pan
,
Nano Res.
13
(
4
),
1053
1059
(
2020
).
3.
S.
Zhang
,
Y.
Hao
,
F.
Gao
,
X.
Wu
,
S.
Hao
,
M.
Qiu
,
X.
Zheng
,
Y.
Wei
, and
G.
Hao
,
2D Mater.
11
(
1
),
015007
(
2024
).
4.
A.
Eftekhari
,
J. Mater. Chem. A
5
(
35
),
18299
18325
(
2017
).
5.
M.
Califano
,
R.
Lu
, and
Y.
Zhou
,
ACS Nano
15
(
12
),
20181
20191
(
2021
).
6.
C.
Zhang
,
B.
Zheng
,
G.
Wu
,
X.
Liu
,
J.
Wu
,
C.
Yao
,
Y.
Wang
,
Z.
Tang
,
Y.
Chen
,
L.
Fang
,
L.
Huang
,
D.
Li
,
S.
Li
, and
A.
Pan
,
Nano Res.
17
(
3
),
1856
1863
(
2024
).
7.
D.-Y.
Lin
,
J.-J.
Jheng
,
T.-S.
Ko
,
H.-P.
Hsu
, and
C.-F.
Lin
,
AIP Adv.
8
(
5
),
055011
(
2018
).
8.
J.
Zhu
,
X.
Ding
,
X.
Zhang
, and
X.
Ma
,
Int. J. Mod. Phys. B
35
(
06
),
2150082
(
2021
).
9.
J.
Park
,
S.
Kim
,
M.
Yang
,
H.
Hosono
,
K.
Park
,
J.
Yoon
,
J.
Bak
,
B.
You
,
S.-W.
Park
,
M. G.
Hahm
, and
M.
Lee
,
ACS Photonics
10
(
8
),
2930
2940
(
2023
).
10.
A.
Schwarz
,
H.
Alon-Yehezkel
,
A.
Levi
,
R. K.
Yadav
,
K.
Majhi
,
Y.
Tzuriel
,
L.
Hoang
,
C. S.
Bailey
,
T.
Brumme
,
A. J.
Mannix
,
H.
Cohen
,
E.
Yalon
,
T.
Heine
,
E.
Pop
,
O.
Cheshnovsky
, and
D.
Naveh
,
npj 2D Mater. Appl.
7
(
1
),
59
(
2023
).
11.
Y.
Zhao
,
S. M.
Gali
,
C.
Wang
,
A.
Pershin
,
A.
Slassi
,
D.
Beljonne
, and
P.
Samorì
,
Adv. Funct. Mater.
30
(
45
),
2005045
(
2020
).
12.
M.
Khan
,
M. N.
Tripathi
, and
A.
Tripathi
,
Mater. Sci. Semicond. Process.
177
,
108339
(
2024
).
13.
A.
Guskov
,
A.
Avdizhiyan
,
S.
Lavrov
,
R.
Galiev
,
A.
Gorbatova
,
A.
Buryakov
, and
E.
Mishina
,
Appl. Phys. Express
14
(
7
),
075005
(
2021
).
14.
Y.
Zhou
,
L.
Han
,
Q.
Song
,
W.
Gao
,
M.
Yang
,
Z.
Zheng
,
L.
Huang
,
J.
Yao
, and
J.
Li
,
Sci. China Mater.
65
(
3
),
732
740
(
2022
).
15.
Z.
Jin-yue
,
L. Y. U.
Jun-peng
, and
N. I.
Zhen-hua
,
Chin. Opt.
14
(
1
),
87
99
(
2021
).
16.
X.
Lin
,
F.
Wang
,
X.
Shan
,
Y.
Miao
,
X.
Chen
,
M.
Yan
,
L.
Zhang
,
K.
Liu
,
J.
Luo
, and
K.
Zhang
,
Appl. Surf. Sci.
546
,
149074
(
2021
).
17.
J.-W.
Liu
,
J.
Xu
,
W.
Hu
,
J.-L.
Yang
, and
S.-H.
Yu
,
ChemNanoMat
2
(
3
),
167
170
(
2016
).
18.
Z.
Chai
,
H.
Wang
,
Q.
Suo
,
N.
Wu
,
X.
Wang
, and
C.
Wang
,
CrystEngComm
16
(
17
),
3507
3514
(
2014
).
19.
H.-S.
Qian
,
S.-H.
Yu
,
J.-Y.
Gong
,
L.-B.
Luo
, and
L.-f.
Fei
,
Langmuir
22
(
8
),
3830
3835
(
2006
).
20.
G.
Hao
,
J.
Xiao
,
Y.
Hao
,
G.
Zhou
,
H.
Zhu
,
H.
Gao
,
Z.
Xu
,
Z.
Zhao
,
L.
Miao
,
J.
Li
,
H.
Sun
, and
C.
Zhao
,
Mater. Today Phys.
34
,
101069
(
2023
).
21.
H.
Zhu
,
L.
Fan
,
K.
Wang
,
H.
Liu
,
J.
Zhang
, and
S.
Yan
,
Nanomaterials
13
(
14
),
2057
(
2023
).
22.
J.
Li
,
D.
Cao
,
F.
Chen
,
D.
Wu
,
Y.
Yan
,
J.
Du
,
J.
Yang
,
Y.
Tian
,
X.
Li
, and
P.
Lin
,
ACS Appl. Mater. Interfaces
14
(
47
),
53202
53212
(
2022
).
23.
X.
He
,
L.
Zhang
,
W.
Hong
,
B.
Wang
,
F.
Sun
,
Z.
Hong
,
Q.
Cai
,
Z.
Sun
, and
W.
Liu
,
Adv. Opt. Mater.
11
(
17
),
2300319
(
2023
).
24.
R.
Yang
,
Y.
Fan
,
L.
Mei
,
H. S.
Shin
,
D.
Voiry
,
Q.
Lu
,
J.
Li
, and
Z.
Zeng
,
Nat. Synth.
2
(
2
),
101
118
(
2023
).
25.
X.
Zhou
,
N.
Zhou
,
C.
Li
,
H.
Song
,
Q.
Zhang
,
X.
Hu
,
L.
Gan
,
H.
Li
,
J.
,
J.
Luo
,
J.
Xiong
, and
T.
Zhai
,
2D Mater.
4
(
2
),
025048
(
2017
).
26.
Y.
Wei
,
C.
Lan
,
J.
Zeng
,
Y.
Meng
,
S.
Zhou
,
S.
Yip
,
C.
Li
,
Y.
Yin
, and
J. C.
Ho
,
Adv. Opt. Mater.
12
(
18
),
2400056
(
2024
).
27.
Y.
Wen
and
Z.
Wu
,
Solid-State Electron.
209
,
108765
(
2023
).
28.
X.
Ji
,
Z.
Bai
,
F.
Luo
,
M.
Zhu
,
C.
Guo
,
Z.
Zhu
, and
S.
Qin
,
ACS Omega
7
(
12
),
10049
10055
(
2022
).
29.
M.
Peng
,
Y.
Yu
,
Z.
Wang
,
X.
Fu
,
Y.
Gu
,
Y.
Wang
,
K.
Zhang
,
Z.
Zhang
,
M.
Huang
,
Z.
Cui
,
F.
Zhong
,
P.
Wu
,
J.
Ye
,
T.
Xu
,
Q.
Li
,
P.
Wang
,
F.
Yue
,
F.
Wu
,
J.
Dai
,
C.
Chen
, and
W.
Hu
,
ACS Photonics
9
(
5
),
1775
1782
(
2022
).
30.
Q.
Xu
,
L.
Zhang
,
B.
Cheng
,
J.
Fan
, and
J.
Yu
,
Chem
6
(
7
),
1543
1559
(
2020
).
31.
J.
Li
,
X.
Zhang
,
X.
Xiong
,
C.
Wu
,
Y.
Jin
, and
K.
Lv
,
Sep. Purif. Technol.
354
,
129444
(
2025
).
32.
Q.
Fan
,
Z.
Yan
,
J.
Li
,
X.
Xiong
,
K.
Li
,
G.
Dai
,
Y.
Jin
, and
C.
Wu
,
Appl. Surf. Sci.
663
,
160206
(
2024
).
33.
F.
Xing
,
L.
Wang
,
Y.
Zhou
,
S.
Jin
,
H.
Jin
, and
J.
Li
,
Inorg. Chem. Front.
10
(
10
),
3112
3120
(
2023
).
34.
R.
Besse
,
H.
Wang
,
D.
West
,
J. L. F.
Da Silva
, and
S.
Zhang
,
J. Phys. Chem. Lett.
13
(
28
),
6407
6411
(
2022
).
35.
P.
Chen
,
T. T.
Zhang
,
J.
Zhang
,
J.
Xiang
,
H.
Yu
,
S.
Wu
,
X.
Lu
,
G.
Wang
,
F.
Wen
,
Z.
Liu
,
R.
Yang
,
D.
Shi
, and
G.
Zhang
,
Nanoscale
8
(
6
),
3254
3258
(
2016
).
36.
D.
Akinwande
,
C.
Huyghebaert
,
C.-H.
Wang
,
M. I.
Serna
,
S.
Goossens
,
L.-J.
Li
,
H. S. P.
Wong
, and
F. H. L.
Koppens
,
Nature
573
(
7775
),
507
518
(
2019
).
You do not currently have access to this content.