Quantum information processing systems rely on cryogenic microwave electronics, and printed circuit board (PCB) laminates play an essential role, including integrating quantum chips and connecting microwave circuit elements. In this Letter, we report a method for accurately determining the microwave conductivity and complex permittivity of PCB laminates over a wide temperature range, from 4 to 300 K. The use of higher-order resonant modes of a balanced-type circular disk resonator (BCDR) enables broadband measurements ranging from below 5 GHz to above 20 GHz. Furthermore, a temperature-independent determination scheme is achieved by employing a pair of BCDRs and a cryogenic calibration technique. This method is demonstrated by measuring two commercially available PCB laminates. The results indicate that while dielectric loss is monotonically reduced at cryogenic temperatures, the reduction in conductor loss is strongly suppressed by the surface roughness of the copper foil. Additionally, the obtained conductivity as a function of frequency and temperature fits well with the Gradient Model, allowing for the evaluation of the root mean square roughness parameter.

1.
J. C.
Bardin
,
D. H.
Slichter
, and
D. J.
Reilly
, “
Microwaves in quantum computing
,”
IEEE J. Microwave
1
,
403
427
(
2021
).
2.
M. F.
Asiani
,
J. H.
Chai
,
Y.
Thonnart
et al, “
Optimizing resource efficiencies for scalable full-stack quantum computers
,”
PRX Quantum
4
,
040319
(
2023
).
3.
B.
Cheng
,
X.-H.
Deng
,
X.
Gu
et al, “
Noisy intermediate-scale quantum computers
,”
Front. Phys.
18
,
21308
(
2023
).
4.
M.
Ahmad
,
C.
Giagkoulovits
,
S.
Danilin
et al, “
Scalable cryoelectronics for superconducting qubit control and readout
,”
Adv. Intell. Syst.
4
,
2200079
(
2022
).
5.
R.
Acharya
,
S.
Brebels
,
A.
Grill
et al, “
Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer
,”
Nat. Electron.
6
,
900
909
(
2023
).
6.
N.
Takeuchi
,
T.
Yamae
,
T.
Yamashita
et al, “
Microwave-multiplexed qubit controller using adiabatic superconductor logic
,”
npj Quantum Inf.
10
,
53
(
2024
).
7.
C.-G.
Wang
,
W.
Xu
,
C.
Li
et al, “
Integrated and DC-powered superconducting microcomb
,”
Nat. Commun.
15
,
4009
(
2024
).
8.
S.
Simbierowicz
,
V. Y.
Monarkha
,
S.
Singh
et al, “
Microwave calibration of qubit drive line components at millikelvin temperatures
,”
Appl. Phys. Lett.
120
,
054004
(
2022
).
9.
Y.
Tong
and
Q.
Chen
, “
Analytical modeling of multiple co-existing inaccuracies in RF controlling circuits for superconducting quantum computing
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
43
,
319
323
(
2024
).
10.
A. S.
Aasen
,
A.
Di Giovanni
,
H.
Rotzinger
et al, “
Readout error mitigated quantum state tomography tested on superconducting qubits
,”
Commun. Phys.
7
,
301
(
2024
).
11.
J. I.
Colless
and
D. J.
Reilly
, “
Cryogenic high-frequency readout and control platform for spin qubits
,”
Rev. Sci. Instrum.
83
,
023902
(
2012
).
12.
J. I.
Colless
and
D. J.
Reilly
, “
Modular cryogenic interconnects for multi-qubit devices
,”
Rev. Sci. Instrum.
85
,
114706
(
2014
).
13.
S.
Simbierowicz
,
V. Y.
Monarkha
,
M.
von Soosten
et al, “
Calibrated transmission and reflection from a multi-qubit microwave package
,”
Rev. Sci. Instrum.
94
,
054713
(
2023
).
14.
V. Y.
Monarkha
,
S.
Simbierowicz
,
M.
Borrelli
et al, “
Equivalence of flexible stripline and coaxial cables for superconducting qubit control and readout pulses
,”
Appl. Phys. Lett.
124
,
224001
(
2024
).
15.
J. P.
Smith
,
B. A.
Mazin
,
A.
Boaventura
et al, “
Improved flexible coaxial ribbon cable for high-density superconducting arrays
,”
IEEE Trans. Appl. Supercond.
34
,
2500106
(
2024
).
16.
B. C.
Wadell
,
Transmission Line Design Handbook, Artech House Microwave Library, Microwave Library
(
Artech House
,
1991
).
17.
M.
Stanley
,
R. P.
Jervis
,
J.
Skinner
et al, “
Determination of the permittivity of transmission lines at milli-kelvin temperatures
,”
IEEE Access
11
,
60626
60634
(
2023
).
18.
A.
Paghi
,
G.
Trupiano
,
C.
Puglia
et al, “
Estimation of the FR4 microwave dielectric properties at cryogenic temperature for quantum-chip-interface PCBs design
,”
IEEE Trans. Instrum. Meas.
73
,
1
7
(
2024
).
19.
Y.
Kobayashi
, “
Microwave characterization of copper-clad dielectric laminate substrates
,”
IEICE Trans. Electron.
E90-C
,
2178
2184
(
2007
).
20.
N.
Hirayama
,
A.
Nakayama
, and
H.
Yoshikawa
, “
Measurements of interface conductivity of copper-clad dielectric substrates at millimeter wave frequencies using TE02δ mode dielectric rod resonator excited by NRD guide
,” in
Asia-Pacific Microwave Conference (APMC)
(
IEEE
,
2018
), pp.
1220
1222
.
21.
T.
Charlet
,
O.
Tantot
,
N.
Delhote
et al, “
Microwave characterisation of the coefficient of thermal expansion and the thermal evolution of electric conductivity for metallised substrate
,” in
50th European Microwave Conference (EuMC)
(
IEEE
,
2021
), pp.
905
908
.
22.
J.
Krupka
,
A.
Gregory
,
O.
Rochard
et al, “
Uncertainty of complex permittivity measurements by split-post dielectric resonator technique
,”
J. Eur. Ceram. Soc.
21
,
2673
2676
(
2001
).
23.
B.
Riddle
,
J.
Baker-Jarvis
, and
J.
Krupka
, “
Complex permittivity measurements of common plastics over variable temperatures
,”
IEEE Trans. Microwave Theory Tech.
51
,
727
733
(
2003
).
24.
M.
Janezic
,
E.
Kuester
, and
J.
Jarvis
, “
Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator
,” in
IEEE MTT-S International Microwave Symposium Digest (IEEE Catalysis No. 04CH37535)
(
IEEE
,
2004
), Vol.
3
, pp.
1817
1820
.
25.
H.
Yoshikawa
and
A.
Nakayama
, “
Measurements of complex permittivity at millimeter-wave frequencies with an end-loaded cavity resonator
,”
IEEE Trans. Microwave Theory Tech.
56
,
2001
2007
(
2008
).
26.
R.
Jamal
,
T.
Olivier
,
P.
Damien
et al, “
Monitoring of electromagnetic characteristics of split cylinder resonator and dielectric material for temperature caraterization
,” in
44th European Microwave Conference
(
IEEE
,
2014
), pp.
120
123
.
27.
J.
Krupka
, “
Measurements of the complex permittivity of low loss polymers at frequency range from 5 GHz to 50 GHz
,”
IEEE Microwave Wireless Compon. Lett.
26
,
464
466
(
2016
).
28.
Y.
Kato
and
M.
Horibe
, “
New permittivity measurement methods using resonant phenomena for high-permittivity materials
,”
IEEE Trans. Instrum. Meas.
66
,
1191
1200
(
2017
).
29.
T.
Shimizu
and
Y.
Kobayashi
, “
Millimeter wave measurements of temperature dependence of complex permittivity of GaAs plates by a circular waveguide method
,” in
IEEE MTT-S International Microwave Sympsoium Digest (Catalysis No. 01CH37157)
(
IEEE
,
2001
), Vol.
3
, pp.
2195
2198
.
30.
V.
Giordano
,
Y.
Kersalé
, and
J.-J.
Boy
, “
Dielectric properties of La3Ga5SiO14 at microwave frequencies between 10 and 400 K
,”
Appl. Phys. Lett.
78
,
2545
2547
(
2001
).
31.
M. V.
Jacob
,
J. G.
Hartnett
,
J.
Mazierska
et al, “
Dielectric characterisation of barium fluoride at cryogenic temperatures using TE011 and quasi TE0mn mode dielectric resonators
,”
Cryogenics
46
,
730
735
(
2006
).
32.
M. V.
Jacob
,
J.
Krupka
,
J.
Mazierska
, and
M.
Bialkowski
, “
Temperature dependence of complex permittivity of planar microwave materials
,” in
Asia-Pacific Microwave Conference, Yokohama, Japan
(
IEEE
,
2006
), pp.
1453
1456
.
33.
H.
Kawabata
and
Y.
Kobayashi
, “
The analysis of a balanced-type circular disk resonator excited by coaxial cable lines to measure the complex permittivity
,” in
APMC 2001. Asia-Pacific Microwave Conference (Catalysis No. 01TH8577)
(
IEEE
,
2001
), Vol.
3
, pp.
1322
1325
.
34.
H.
Kawabata
,
K.
Hasuike
,
Y.
Kobayashi
, and
Z.
Ma
, “
Multi-frequency measurements of complex permittivity of dielectric plates using higher-order modes of a balanced-type circular disk resonator
,” in
European Microwave Conference
(
IEEE
,
2006
), pp.
388
391
.
35.
Y.
Kato
and
M.
Horibe
, “
Permittivity measurements and associated uncertainties up to 110 GHz in circular-disk resonator method
,” in
46th European Microwave Conference (EuMC)
(
IEEE
,
2016
), pp.
1139
1142
.
36.
Y.
Kato
and
M.
Horibe
, “
Broadband permittivity measurements up to 170-GHz using balanced-type circular-disk resonator excited by 0.8-mm coaxial line
,”
IEEE Trans. Instrum. Meas.
68
,
1796
1805
(
2019
).
37.
K.
Takahashi
,
S.
Kikuchi
,
A.
Matsui
et al, “
Complex permittivity measurements in a wide temperature range for printed circuit board material used in millimeter wave band
,” in
IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA
(
IEEE
,
2020
), pp.
938
945
.
38.
Y.
Kato
and
M.
Horibe
, “
Broadband conductivity measurement technique at millimeter-wave bands using a balanced-type circular disk resonator
,”
IEEE Trans. Microwave Theory Tech.
69
,
861
873
(
2021
).
39.
Y.
Kato
and
M.
Horibe
, “
Broadband complex permittivity and conductivity measurements in the millimeter-wave bands over variable temperatures using a balanced-type circular disk resonator
,”
Appl. Phys. Lett.
119
,
092902
(
2021
).
40.
Y.
Kato
, “
D-band material characterization using a balanced-type circular disk resonator with waveguide interfaces and a modified full-wave modal analysis
,”
IEEE Trans. Instrum. Meas.
72
,
6009210
(
2023
).
41.
T.
Arakawa
and
S.
Kon
, “
Calibrated two-port microwave measurement up to 26.5 GHz for wide temperature range from 4 to 300 K
,”
IEEE Trans. Instrum. Meas.
72
,
1009608
(
2023
).
42.
G.
Gold
and
K.
Helmreich
, “
A physical model for skin effect in rough surfaces
,” in
42nd European Microwave Conference, Amsterdam, Netherlands
(
IEEE
,
2012
), pp.
1011
1014
.
43.
G.
Gold
and
K.
Helmreich
, “
A physical surface roughness model and its applications
,”
IEEE Trans. Microwave Theory Tech.
65
,
3720
3732
(
2017
).
44.
K.
Lomakin
,
G.
Gold
, and
K.
Helmreich
, “
Analytical waveguide model precisely predicting loss and delay including surface roughness
,”
IEEE Trans. Microwave Theory Tech.
66
,
2649
2662
(
2018
).
45.
B.
Huang
and
Q.
Jia
, “
Accurate modeling of conductor rough surfaces in waveguide devices
,”
Electronics
8
,
269
(
2019
).
46.
E. O.
Hammerstad
and
F.
Bekkadal
,
Microstrip Handbook
(
Norwegian Institute of Technology
,
Trondheim, Norway
,
1975
), pp.
4
8
.
You do not currently have access to this content.