Flexible piezoresistive strain sensors are crucial for monitoring human motion, but achieving the right balance between sensitivity and operating range has always been challenging. Additionally, the complexity of muscle movements across different body parts means that relying on sensors with limited dimensional sensing is insufficient. This paper presents a flexible piezoresistive three-dimensional strain sensor (FPTDSS) designed to address these challenges. The FPTDSS features a wide operating range capable of detecting various human movements and boasts a high sensitivity, with a maximum gauge factor of 20 479. It can capture strain information along both the X- and Y-axes, as well as small vibrations along the Z-axis, through its intrinsic stretching and vibration properties. The sensor's effectiveness comes from the synergy between laser-induced graphene, silver nanoparticles (a zero-dimensional nanomaterial), and multi-walled carbon nanotubes (a one-dimensional nanomaterial). The synergistic effect of nanomaterials with different dimensions enables the FPTDSS to perform three-dimensional strain sensing, allowing for accurate detection of a broad range of complex human motions without requiring intricate circuit designs or preparation processes. This approach moves beyond limited strain information to provide a comprehensive view of three-dimensional strain, making the sensor versatile for detecting everything from subtle pulse vibrations to significant joint movements.

1.
S. T.
Han
,
H.
Peng
,
Q.
Sun
,
S.
Venkatesh
,
K. S.
Chung
,
S. C.
Lau
,
Y.
Zhou
, and
V. A. L.
Roy
, “
An overview of the development of flexible sensors
,”
Adv. Mater.
29
(
33
),
1700375
(
2017
).
2.
Y.
Luo
,
M. R.
Abidian
,
J.-H.
Ahn
,
D.
Akinwande
,
A. M.
Andrews
et al,“
Technology roadmap for flexible sensors
,”
ACS Nano
17
(
6
),
5211
5295
(
2023
).
3.
H.
Chen
,
J.
Zhou
,
X.
Long
,
F.
Zhuo
,
Y.
Liu
,
Y.
Zhao
,
J.
Xie
,
H.
Duan
, and
Y.
Fu
, “
Fibrous mats based skin sensor with ultra-sensitivity and anti-overshooting dynamic stability enhanced with artificial intelligence
,”
Chem. Eng. J.
473
,
145054
(
2023
).
4.
X.
Liu
,
B.
Cui
,
X.
Wang
,
M.
Zheng
,
Z.
Bai
,
O.
Yue
,
Y.
Fei
, and
H.
Jiang
, “
Nature-skin-derived e-skin as versatile “wound therapy-health monitoring” bioelectronic skin-scaffolds: Skin to bio-e-skin
,”
Adv. Healthcare Mater.
12
(
20
),
2202971
(
2023
).
5.
N.
Tang
,
C.
Zhou
,
D.
Qu
,
Y.
Fang
,
Y.
Zheng
,
W.
Hu
,
K.
Jin
,
W.
Wu
,
X.
Duan
, and
H.
Haick
, “
A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion
,”
Small
16
(
24
),
2001363
(
2020
).
6.
X.
Zheng
,
W.
Nie
,
Q.
Hu
,
X.
Wang
,
Z.
Wang
,
L.
Zou
,
X.
Hong
,
H.
Yang
,
J.
Shen
, and
C.
Li
, “
Multifunctional RGO/TI3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection
,”
Mater. Des.
200
,
109442
(
2021
).
7.
C.
Hang
,
X.
Zhao
,
S.
Xi
,
Y.
Shang
,
K.
Yuan
,
F.
Yang
,
Q.
Wang
,
J.
Wang
,
D.
Zhang
, and
H.
Lu
, “
Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface
,”
Nano Energy
76
,
105064
(
2020
).
8.
E.
Roh
,
B. U.
Hwang
,
D.
Kim
,
B. Y.
Kim
, and
N. E.
Lee
, “
Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
,”
ACS Nano.
9
(
6
),
6252
6261
(
2015
).
9.
Y.
Zhang
,
Z.
Xu
,
Y.
Yuan
,
C.
Liu
,
M.
Zhang
,
L.
Zhang
, and
P.
Wan
, “
Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing
,”
Adv. Funct. Mater.
33
(
21
),
2300299
(
2023
).
10.
Y.
Wang
,
X.
Li
,
X.
Xu
, and
G.
Li
, “
Double-layer stretchable composite conductive graphene-hydrogel with wide-range linear sensing and thermal-humidity management for health monitoring
,”
Chem. Eng. J.
498
,
155808
(
2024
).
11.
S.
Li
,
J.
Huang
,
M.
Wang
,
K.
Deng
,
C.
Guo
,
B.
Li
,
Y.
Cheng
,
H.
Sun
,
H.
Ye
,
T.
Pan
, and
Y.
Chang
, “
Structural electronic skin for conformal tactile sensing
,”
Adv. Sci.
10
(
33
),
2304106
(
2023
).
12.
O. A.
Araromi
,
M. A.
Graule
,
K. L.
Dorsey
,
S.
Castellanos
,
J. R.
Foster
,
W. H.
Hsu
,
A. E.
Passy
,
J. J.
Vlassak
,
J. C.
Weaver
,
C. J.
Walsh
, and
R. J.
Wood
, “
Ultra-sensitive and resilient compliant strain gauges for soft machines
,”
Nature
587
(
7833
),
219
224
(
2020
).
13.
H. C.
Ates
,
P. Q.
Nguyen
,
L.
Gonzalez-Macia
,
E.
Morales-Narváez
,
F.
Güder
,
J. J.
Collins
, and
C.
Dincer
, “
End-to-end design of wearable sensors
,”
Nat. Rev. Mater.
7
(
11
),
887
907
(
2022
).
14.
B.
Appelman
,
B. T.
Charlton
,
R. P.
Goulding
,
T. J.
Kerkhoff
,
E. A.
Breedveld
,
W.
Noort
,
C.
Offringa
,
F. W.
Bloemers
,
M.
van Weeghel
,
B. V.
Schomakers
,
P.
Coelho
,
J. J.
Posthuma
,
E.
Aronica
,
W.
Joost Wiersinga
,
M.
van Vugt
, and
R. C. I.
Wüst
, “
Muscle abnormalities worsen after post-exertional malaise in long COVID
,”
Nat. Commun.
15
(
1
),
17
(
2024
).
15.
L.
Duan
,
D. R.
D'Hooge
, and
L.
Cardon
, “
Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application
,”
Prog. Mater. Sci.
114
,
100617
(
2020
).
16.
Q.
Zheng
,
J. H.
Lee
,
X.
Shen
,
X.
Chen
, and
J. K.
Kim
, “
Graphene-based wearable piezoresistive physical sensors
,”
Mater. Today
36
,
158
179
(
2020
).
17.
Y.
Cai
,
J.
Shen
,
C. W.
Yang
,
Y.
Wan
,
H. L.
Tang
,
A. A.
Aljarb
,
C.
Chen
,
J. H.
Fu
,
X.
Wei
,
K. W.
Huang
,
Y.
Han
,
S. J.
Jonas
,
X.
Dong
, and
V.
Tung
, “
Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range
,”
Sci. Adv.
6
(
48
),
eabb5367
(
2020
).
18.
H. R.
Na
,
H. J.
Lee
,
J. H.
Jeon
,
H. J.
Kim
,
S. K.
Jerng
,
S. B.
Roy
,
S. H.
Chun
,
S.
Lee
, and
Y. J.
Yun
, “
Vertical graphene on flexible substrate, overcoming limits of crack-based resistive strain sensors
,”
npj Flexible Electron.
6
(
1
),
2
(
2022
).
19.
W.
Liu
,
Q.
Chen
,
Y.
Huang
,
D.
Wang
,
L.
Li
, and
Z.
Liu
, “
In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability
,”
Carbon
190
,
245
254
(
2022
).
20.
S.
Zhang
,
A.
Chhetry
,
M. A.
Zahed
,
S.
Sharma
,
C.
Park
,
S.
Yoon
, and
J. Y.
Park
, “
On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables
,”
npj Flexible Electron.
6
(
1
),
11
(
2022
).
21.
A.
Chhetry
,
M.
Sharifuzzaman
,
H.
Yoon
,
S.
Sharma
,
X.
Xuan
, and
J. Y.
Park
, “
MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor
,”
ACS Appl. Mater. Interfaces
11
(
25
),
22531
22542
(
2019
).
22.
D.
Kim
,
A.
Chhetry
,
M. A.
Zahed
,
S.
Sharma
,
S.
Jeong
,
H.
Song
, and
J. Y.
Park
, “
Highly sensitive and reliable piezoresistive strain sensor based on cobalt nanoporous carbon-incorporated laser-induced graphene for smart healthcare wearables
,”
ACS Appl. Mater. Interfaces
15
(
1
),
1475
1485
(
2023
).
23.
H.
Yoon
,
K.
Lee
,
H.
Shin
,
S.
Jeong
,
Y. J.
Lee
,
S.
Yang
, and
S. H.
Lee
, “
In situ co‐transformation of reduced graphene oxide embedded in laser‐induced graphene and full‐range on‐body strain sensor
,”
Adv. Funct. Mater.
33
(
38
),
2300322
(
2023
).
24.
X.
Guo
,
W.
Hong
,
Y.
Zhao
,
T.
Zhu
,
L.
Liu
,
H.
Li
,
Z.
Wang
,
D.
Wang
,
Z.
Mai
,
T.
Zhang
,
J.
Yang
,
F.
Zhang
,
Y.
Xia
,
Q.
Hong
,
Y.
Xu
,
F.
Yan
,
M.
Wang
, and
G.
Xing
, “
Bioinspired dual-mode stretchable strain sensor based on magnetic nanocomposites for strain/magnetic discrimination
,”
Small
19
(
1
),
e2205316
(
2023
).
25.
K.
Liu
,
C.
Yang
,
S.
Zhang
,
Y.
Wang
,
R.
Zou
,
Alamusi
,
Q.
Deng
, and
N.
Hu
, “
Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and anti-icing/deicing performance
,”
Mater. Des.
218
,
110689
(
2022
).
26.
Y.
Lin
,
Q.
Yin
,
J.
Wang
,
H.
Jia
,
G.
Yuan
, and
J.
Wang
, “
Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers
,”
Chem. Eng. J.
443
,
136468
(
2022
).
27.
W.
Wang
,
L.
Lu
,
Z.
Li
,
L.
Lin
,
Z.
Liang
,
X.
Lu
, and
Y.
Xie
, “
Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene
,”
ACS Appl. Mater. Interfaces
14
(
1
),
1315
1325
(
2022
).
28.
J.
Qin
,
L. J.
Yin
,
Y. N.
Hao
,
S. L.
Zhong
,
D. L.
Zhang
,
K.
Bi
,
Y. X.
Zhang
,
Y.
Zhao
, and
Z.
Dang
, “
Flexible and stretchable capacitive sensors with different microstructures
,”
Adv. Mater.
33
(
34
),
e2008267
(
2021
).
29.
Z.
Shen
,
F.
Liu
,
S.
Huang
,
H.
Wang
,
C.
Yang
,
T.
Hang
,
J.
Tao
,
W.
Xia
, and
X.
Xie
, “
Progress of flexible strain sensors for physiological signal monitoring
,”
Biosens. Bioelectron.
211
,
114298
(
2022
).
30.
T.
Zhu
,
Y.
Ni
,
K.
Zhao
,
J.
Huang
,
Y.
Cheng
,
M.
Ge
,
C.
Park
, and
Y.
Lai
, “
A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming
,”
ACS Nano
16
(
11
),
18018
18026
(
2022
).
31.
Y. W.
Sun
,
D. G.
Papageorgiou
,
C. J.
Humphreys
,
D. J.
Dunstan
,
P.
Puech
,
J. E.
Proctor
,
C.
Bousige
,
D.
Machon
, and
A.
San-Miguel
, “
Mechanical properties of graphene
,”
Appl. Phys. Rev.
8
(
2
),
021310
(
2021
).
32.
T.
Radsar
,
H.
Khalesi
, and
V.
Ghods
, “
Graphene properties and applications in nanoelectronic
,”
Opt. Quantum Electron.
53
(
4
),
178
(
2021
).
33.
S.
Kumar
,
S.
Pratap
,
V.
Kumar
,
R. K.
Mishra
,
J. S.
Gwag
, and
B.
Chakraborty
, “
Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review
,”
Luminescence
38
(
7
),
909
953
(
2023
).
34.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
(
3
),
183
191
(
2007
).
35.
J.
Lin
,
Z.
Peng
,
Y.
Liu
,
F.
Ruiz-Zepeda
,
R.
Ye
,
E. L.
Samuel
,
M. J.
Yacaman
,
B. I.
Yakobson
, and
J. M.
Tour
, “
Laser-induced porous graphene films from commercial polymers
,”
Nat. Commun.
5
,
5714
(
2014
).
36.
S. J.
Kim
,
W.
Song
,
Y.
Yi
,
B. K.
Min
,
S.
Mondal
,
K. S.
An
, and
C. G.
Choi
, “
High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection
,”
ACS Appl. Mater. Interfaces
10
(
4
),
3921
3928
(
2018
).
37.
J.
Zhu
,
X.
Huang
, and
W.
Song
, “
Physical and chemical sensors on the basis of laser-induced graphene: Mechanisms, applications, and perspectives
,”
ACS Nano
15
(
12
),
18708
18741
(
2021
).
38.
E.
Alhajji
,
F.
Zhang
, and
H. N.
Alshareef
, “
Status and prospects of laser‐induced graphene for battery applications
,”
Energy Technol.
9
(
10
),
2100454
(
2021
).
39.
J. P.
Giraldo
,
H.
Wu
,
G. M.
Newkirk
, and
S.
Kruss
, “
Nanobiotechnology approaches for engineering smart plant sensors
,”
Nat. Nanotechnol.
14
(
6
),
541
553
(
2019
).
40.
S.
Gong
,
X.
Zhang
,
X. A.
Nguyen
,
Q.
Shi
,
F.
Lin
,
S.
Chauhan
,
Z.
Ge
, and
W.
Cheng
, “
Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors
,”
Nat. Nanotechnol.
18
(
8
),
889
897
(
2023
).
41.
Y.
Ben-Shimon
,
C. P.
Sharma
,
C. J.
Arnusch
, and
A.
Ya'akobovitz
, “
Freestanding laser-induced graphene ultrasensitive resonative viral sensors
,”
ACS Appl. Mater. Interfaces
14
(
39
),
44713
44723
(
2022
).
42.
M.
Tahir
,
L.
He
,
L.
Li
,
Y.
Cao
,
X.
Yu
,
Z.
Lu
,
X.
Liao
,
Z.
Ma
, and
Y.
Song
, “
Pushing the electrochemical performance limits of polypyrrole toward stable microelectronic devices
,”
Nanomicro. Lett.
15
(
1
),
49
(
2023
).
43.
H.
Zhang
,
D.
Liu
,
J. H.
Lee
,
H.
Chen
,
E.
Kim
,
X.
Shen
,
Q.
Zheng
,
J.
Yang
, and
J. K.
Kim
, “
Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors
,”
Nanomicro. Lett.
13
(
1
),
122
(
2021
).
44.
R.
Fu
,
X.
Zhao
,
X.
Zhang
, and
Z.
Su
, “
Design strategies and applications of wearable piezoresistive strain sensors with dimensionality-based conductive network structures
,”
Chem. Eng. J.
454
,
140467
(
2023
).
45.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
, “
Raman spectrum of graphene and graphene layers
,”
Phys. Rev. Lett.
97
(
18
),
187401
(
2006
).
You do not currently have access to this content.